
103

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

DOI: 10.4018/978-1-5225-3923-0.ch005

ABSTRACT

One of the most fundamental aspects of software engineering is the ability of software artifacts, namely
programs, to interact and to produce applications that are more complex. This is known as interoperability,
but, in most cases, it is dealt with at the syntactic level only. This chapter analyzes the interoperability
problem from the point of view of abstract software artifacts and proposes a multidimensional framework
that not only structures the description of these artifacts but also provides insight into the details of the
interaction between them. The framework has four dimensions (lifecycle, concreteness level, concerns,
and version). To support and characterize the interaction between artifacts, this chapter uses the concepts
of compliance and conformance, which can establish partial interoperability between the artifacts. This
reduces coupling while still allowing the required interoperability, which increases adaptability and
changeability according to metrics that are proposed and contributes to a sustainable interoperability.

INTRODUCTION

Software systems are neither monolithic nor self-contained, but rather composed of models, specifica-
tions and working modules that are interrelated and need to fit together, usually by design. Decompos-
ing a complex problem into several simpler and smaller artifacts, in a divide & conquer approach, is a
fundamental software engineering technique to deal with complexity and improve design characteristics
such as reusability, agility, changeability, adaptability and reliability.

An artifact can be any entity related to software engineering such as a concept, a specification or a
program. The relationships between artifacts are essential to accomplish the goals of the software system

The Role of Compliance
and Conformance in
Software Engineering

José C. Delgado
Instituto Superior Técnico, Universidade de Lisboa, Portugal

104

The Role of Compliance and Conformance in Software Engineering

but, at the same time, they create dependencies and coupling between them that translate into constraints
and partially hinder these characteristics.

Therefore, software engineering can be described as the application of engineering principles, meth-
ods and techniques to computer-based artifacts under quality and sustainability constraints. Quality
means that the problem needs to be decomposed into the right artifacts and with the right relationships
(satisfying the problem’s specifications with a good architecture). Sustainability (Jardim-Goncalves,
Popplewell & Grilo, 2012) means that changes in the problem specification or in its context should
translate to incremental changes in the artifacts and their relationships, implemented at a faster rate than
the changes that motivated them.

Quality and sustainability are not exclusive of software engineering. A car, for example, is a system
with several thousand components that need to fit together perfectly, under the same constraints. What
distinguishes software engineering is the fact that, in most cases, artifacts are virtual (easy to create and
to destroy), very flexible and exhibit a high variability rate. A computer program can be changed in
minutes or even seconds, which is certainly not the case of physical products such as cars.

This chapter concentrates on the sustainability side of software engineering and specifically in the
relationships between software artifacts, in an attempt to improve the characteristics mentioned above.
The basic tenets that we will use are:

• If an artifact A has no relationship with an artifact B (does not depend on it), then B can change
freely without impacting A. This is good for sustainability. Ideally, all artifacts should be com-
pletely independent (decoupled from all other artifacts);

• Artifacts that have no relationship cannot cooperate, which means that no value comes from de-
composing a system into artifacts. Any system needs that artifacts establish relationships and
cooperate, somehow. This implies some coupling between some artifacts.

These are conflicting goals. The fundamental problem that we are trying to solve is how to get the
best compromise, or how to minimize coupling as much as possible while still satisfying the problem’s
specifications.

Relationships between software artifacts can be established at various levels, such as:

• Conceptual, involving concepts such as strategies, goals and architectures. For example, different
artifacts may cooperate towards some common goal or complementary goals;

• Documental, which pertains mainly to specifications. For example, a given artifact must use the
features defined by some standard;

• Design, entailing the way artifacts are used to build a composed system. For example, any soft-
ware development method will include a decomposition of the problem’s specification and a com-
position of already existing artifacts (such as a software library), trying to match both approaches;

• Operational, in which working artifacts (such as software modules) interact by sending messages.
The receiver of a message must be able to understand the content of a message and the intention
of the sender in sending that message.

This means that relationships between artifacts are not limited to message based interaction but can
occur at any stage of the artifacts’ lifecycle, right from their conception, even if the artifact never becomes
active and able to interact, such as a concept or a document.

29 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/the-role-of-compliance-and-conformance-in-

software-engineering/192874

Related Content

E-Service Innovation in Rural Africa Through Value Co-Creation
Anna Bon, Jaap Gordijnand Hans Akkermans (2020). Disruptive Technology: Concepts, Methodologies,

Tools, and Applications (pp. 859-877).

www.irma-international.org/chapter/e-service-innovation-in-rural-africa-through-value-co-creation/231222

Using Model-Driven Risk Analysis in Component-Based Development
Gyrd Brændelandand Ketil Stølen (2012). Dependability and Computer Engineering: Concepts for

Software-Intensive Systems (pp. 330-380).

www.irma-international.org/chapter/using-model-driven-risk-analysis/55335

Knitting Patterns: Managing Design Complexity with Computation
Dermott John James McMeeland Robert Amor (2021). Research Anthology on Recent Trends, Tools, and

Implications of Computer Programming (pp. 2055-2069).

www.irma-international.org/chapter/knitting-patterns/261116

Recent Developments in Cryptography: A Survey
Kannan Balasubramanian (2018). Cyber Security and Threats: Concepts, Methodologies, Tools, and

Applications (pp. 1272-1293).

www.irma-international.org/chapter/recent-developments-in-cryptography/203560

Orchestrating Ontologies for Courseware Design
Tatiana Gavrilova (2012). Computer Engineering: Concepts, Methodologies, Tools and Applications (pp.

1288-1306).

www.irma-international.org/chapter/orchestrating-ontologies-courseware-design/62512

http://www.igi-global.com/chapter/the-role-of-compliance-and-conformance-in-software-engineering/192874
http://www.igi-global.com/chapter/the-role-of-compliance-and-conformance-in-software-engineering/192874
http://www.irma-international.org/chapter/e-service-innovation-in-rural-africa-through-value-co-creation/231222
http://www.irma-international.org/chapter/using-model-driven-risk-analysis/55335
http://www.irma-international.org/chapter/knitting-patterns/261116
http://www.irma-international.org/chapter/recent-developments-in-cryptography/203560
http://www.irma-international.org/chapter/orchestrating-ontologies-courseware-design/62512

