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ABSTRACT

One of the most fundamental aspects of software engineering is the ability of software artifacts, namely 
programs, to interact and to produce applications that are more complex. This is known as interoperability, 
but, in most cases, it is dealt with at the syntactic level only. This chapter analyzes the interoperability 
problem from the point of view of abstract software artifacts and proposes a multidimensional framework 
that not only structures the description of these artifacts but also provides insight into the details of the 
interaction between them. The framework has four dimensions (lifecycle, concreteness level, concerns, 
and version). To support and characterize the interaction between artifacts, this chapter uses the concepts 
of compliance and conformance, which can establish partial interoperability between the artifacts. This 
reduces coupling while still allowing the required interoperability, which increases adaptability and 
changeability according to metrics that are proposed and contributes to a sustainable interoperability.

INTRODUCTION

Software systems are neither monolithic nor self-contained, but rather composed of models, specifica-
tions and working modules that are interrelated and need to fit together, usually by design. Decompos-
ing a complex problem into several simpler and smaller artifacts, in a divide & conquer approach, is a 
fundamental software engineering technique to deal with complexity and improve design characteristics 
such as reusability, agility, changeability, adaptability and reliability.

An artifact can be any entity related to software engineering such as a concept, a specification or a 
program. The relationships between artifacts are essential to accomplish the goals of the software system 
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but, at the same time, they create dependencies and coupling between them that translate into constraints 
and partially hinder these characteristics.

Therefore, software engineering can be described as the application of engineering principles, meth-
ods and techniques to computer-based artifacts under quality and sustainability constraints. Quality 
means that the problem needs to be decomposed into the right artifacts and with the right relationships 
(satisfying the problem’s specifications with a good architecture). Sustainability (Jardim-Goncalves, 
Popplewell & Grilo, 2012) means that changes in the problem specification or in its context should 
translate to incremental changes in the artifacts and their relationships, implemented at a faster rate than 
the changes that motivated them.

Quality and sustainability are not exclusive of software engineering. A car, for example, is a system 
with several thousand components that need to fit together perfectly, under the same constraints. What 
distinguishes software engineering is the fact that, in most cases, artifacts are virtual (easy to create and 
to destroy), very flexible and exhibit a high variability rate. A computer program can be changed in 
minutes or even seconds, which is certainly not the case of physical products such as cars.

This chapter concentrates on the sustainability side of software engineering and specifically in the 
relationships between software artifacts, in an attempt to improve the characteristics mentioned above. 
The basic tenets that we will use are:

• If an artifact A has no relationship with an artifact B (does not depend on it), then B can change 
freely without impacting A. This is good for sustainability. Ideally, all artifacts should be com-
pletely independent (decoupled from all other artifacts);

• Artifacts that have no relationship cannot cooperate, which means that no value comes from de-
composing a system into artifacts. Any system needs that artifacts establish relationships and 
cooperate, somehow. This implies some coupling between some artifacts.

These are conflicting goals. The fundamental problem that we are trying to solve is how to get the 
best compromise, or how to minimize coupling as much as possible while still satisfying the problem’s 
specifications.

Relationships between software artifacts can be established at various levels, such as:

• Conceptual, involving concepts such as strategies, goals and architectures. For example, different 
artifacts may cooperate towards some common goal or complementary goals;

• Documental, which pertains mainly to specifications. For example, a given artifact must use the 
features defined by some standard;

• Design, entailing the way artifacts are used to build a composed system. For example, any soft-
ware development method will include a decomposition of the problem’s specification and a com-
position of already existing artifacts (such as a software library), trying to match both approaches;

• Operational, in which working artifacts (such as software modules) interact by sending messages. 
The receiver of a message must be able to understand the content of a message and the intention 
of the sender in sending that message.

This means that relationships between artifacts are not limited to message based interaction but can 
occur at any stage of the artifacts’ lifecycle, right from their conception, even if the artifact never becomes 
active and able to interact, such as a concept or a document.
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