
232

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 11

DOI: 10.4018/978-1-5225-3923-0.ch011

ABSTRACT

Software Engineering requires a specific profile of technical expertise combined with context-sensitive
soft skills. Therefore, university education in software engineering should foster both technical knowledge
and soft skills. Students should be enabled to cope with complex situations in real life by applying and
combining their theoretical knowledge with team and communication competencies. In this chapter, the
authors report findings from a software engineering project course. They argue that project work is a
suitable approach to foster soft skills. To that end, the authors provide justification from a pedagogical
point of view, setting project-based learning into relation to action-orientated didactics. As teaching
goals, they focus on experiencing a complete development project from end to end, following a software
process model that needs to be adapted to the specific situation, self-determined planning and acting,
including the organization of the project, teamwork and team communication, and self-reflection on
individual roles and contributions, and on the performance of the project team as a whole. In order to
achieve these goals, the authors form teams of bachelor students, which are headed by one master student
each. It turned out that a clear separation of roles is inevitable within the team, but also with respect
to instructors. Self-reflection processes concerning the team roles and the individual competencies are
explicitly stimulated and cumulate in individual self-reports and post-mortem analysis sessions. The
authors share findings of how well the approaches have worked and outline some ideas to improve things.

Practicing Soft Skills in
Software Engineering:

A Project-Based Didactical Approach

Yvonne Sedelmaier
Coburg University of Applied Sciences and Arts, Germany

Dieter Landes
Coburg University of Applied Sciences and Arts, Germany

233

Practicing Soft Skills in Software Engineering
﻿

1. INTRODUCTION

Software is a core ingredient of nearly any part of our everyday life. This software, however, needs to be
developed by highly skilled individuals. Consequently, in order to acquire and exercise these skills educa-
tion in software engineering plays an important role in university education. Traditionally, universities
laid their main emphasis in software engineering education on technical skills, such as e.g. programming
or testing skills. In recent years, however, it has become increasingly evident that non-technical, also
known as soft, skills are equally important as software is developed in teams of individuals who need
to interact with each other and various stakeholders such as, e.g., customers or users of their software.

Software Engineering requires a specific profile of soft skills that is closely related to technical ex-
pertise. Recently, the authors conducted a survey with junior and senior managers with respect to which
skills they expect from graduates in the software engineering field. Respondents of the survey always
emphasized the importance of soft skills (Sedelmaier, Claren, & Landes, 2013).

Undoubtedly, software development requires profound technical knowledge (Sommerville, 2011).
But evidently, this is not the only thing that matters. Rather, various soft skills are also needed, e.g.
the ability to work in a team of hundreds of members spread around the world or the ability to com-
municate with various other players in the project. All interviewees want software engineers to analyze
and understand complex situations and use a creative and solution-orientated approach. Several other
researchers arrived at similar results and emphasize the importance of non-technical skills (Lu, Lo, &
Lin, 2011; Richardson, Reid, Seidman, Pattinson, & Delaney, 2011; Rivera-Ibarra, Rodríguez-Jacobo,
& Serrano-Vargas, 2010).

Although soft skills obviously are important, our survey showed that students tend to overestimate
their capabilities with respect to both technical and non-technical competencies. Soft skills are core
competencies of a software engineer and for this reason soft skills should be a core part of software
engineering education at universities. These issues are quite difficult to teach because there are no clear
cause-effect-relationships between the didactical approach and the learning outcomes. So it is difficult
for teachers in software engineering to find out which didactical approach works best. Furthermore,
instructors are generally not communication experts themselves and often have neither pedagogical
nor didactical education background. Many things they do are not grounded on pedagogical expertise.

Thus, preparing students for the real life in software engineering is a serious challenge in university
education. One approach to bring complexity and problem awareness into university education is to use
project work. Project work fosters many soft skills such as communication skills and the ability to work
together in a team. Interpersonal skills cannot be trained without other people around, and project work
combines these competencies with the context in which they are needed. Furthermore, project work could
offer students opportunities to understand inter-relationships between technical knowledge and soft skills.

Many software engineering projects fail due to at least one of the following reasons: scheduling,
specifications and/or average manufacturing costs (Button & Sharrock, 1996). Button & Sharrock (1996)
also state that software engineers tend to distinguish between two basic types of problems: “First, those
that are due to deficiencies in the state of general engineering practice, and second, those that arise from
the state of the project they were engaged in. Engineering work on any particular development thus does
not involve only the resolution of the problems arising from the specific circumstances of the project
itself, but also contends with problems that are recognized as generic problems of engineering work
per se” (Button & Sharrock, 1996). Students hardly believe these facts. In their opinion they would do
much better and lead the project to success if they were the actors. Project work in a university context

19 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/practicing-soft-skills-in-software-

engineering/192881

Related Content

Secure Baseband Techniques for Generic Transceiver Architecture for Software-Defined Radio
Nikhil Kumar Marriwala, Om Prakash Sahuand Anil Vohra (2021). Research Anthology on Recent Trends,

Tools, and Implications of Computer Programming (pp. 1961-1983).

www.irma-international.org/chapter/secure-baseband-techniques-for-generic-transceiver-architecture-for-software-

defined-radio/261112

Fault Prediction Modelling in Open Source Software Under Imperfect Debugging and Change-

Point
Shozab Khurshid, A. K. Shrivastavaand Javaid Iqbal (2021). Research Anthology on Recent Trends, Tools,

and Implications of Computer Programming (pp. 277-293).

www.irma-international.org/chapter/fault-prediction-modelling-in-open-source-software-under-imperfect-debugging-and-

change-point/261031

Relationship Between Knowledge Management and Innovation
Andrea Bencsikand Bálint Filep (2020). Disruptive Technology: Concepts, Methodologies, Tools, and

Applications (pp. 531-554).

www.irma-international.org/chapter/relationship-between-knowledge-management-and-innovation/231204

Exceptions for Dependability
Emil Sekerinski (2012). Dependability and Computer Engineering: Concepts for Software-Intensive

Systems (pp. 11-35).

www.irma-international.org/chapter/exceptions-dependability/55322

Modeling Trust Relationships for Developing Trustworthy Information Systems
Michalis Pavlidis, Shareeful Islam, Haralambos Mouratidisand Paul Kearney (2018). Computer Systems

and Software Engineering: Concepts, Methodologies, Tools, and Applications (pp. 1632-1655).

www.irma-international.org/chapter/modeling-trust-relationships-for-developing-trustworthy-information-systems/192939

http://www.igi-global.com/chapter/practicing-soft-skills-in-software-engineering/192881
http://www.igi-global.com/chapter/practicing-soft-skills-in-software-engineering/192881
http://www.irma-international.org/chapter/secure-baseband-techniques-for-generic-transceiver-architecture-for-software-defined-radio/261112
http://www.irma-international.org/chapter/secure-baseband-techniques-for-generic-transceiver-architecture-for-software-defined-radio/261112
http://www.irma-international.org/chapter/fault-prediction-modelling-in-open-source-software-under-imperfect-debugging-and-change-point/261031
http://www.irma-international.org/chapter/fault-prediction-modelling-in-open-source-software-under-imperfect-debugging-and-change-point/261031
http://www.irma-international.org/chapter/relationship-between-knowledge-management-and-innovation/231204
http://www.irma-international.org/chapter/exceptions-dependability/55322
http://www.irma-international.org/chapter/modeling-trust-relationships-for-developing-trustworthy-information-systems/192939

