
1128

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 45

DOI: 10.4018/978-1-5225-3923-0.ch045

ABSTRACT

In the multimodel improvement context, Software Organizations need to incorporate into their processes
different practices from several improvement technologies simultaneously (i.e. CMMI, PSP, ISO 15504,
and others). Over the last few years, software process architectures have been considered a means to
harmonize these technologies. However, it is unclear how to design a software process architecture
supporting a multimodel environment. In this chapter, an overview of the method to design a software
process architecture is presented, identifying basic concepts, views, phases, activities, and artifacts. In
addition, important aspects in the creation of this method are explained. This method will assist process
stakeholders in the design, documentation, and maintenance of their software process architecture.

1. INTRODUCTION

Multimodel Software Process Improvement (MSPI) aims to achieve business goals, develop quality products
through a mature process applying multiple improvement technologies best practices simultaneously, and
reduce time-to-market and production costs (Siviy, Penn, & Stoddard, 2008; Unterkalmsteiner, Gorschek,
Islam, Cheng, Permadi, & Feldt, 2012). Therefore, software organizations are analyzing their processes,
selecting appropriate improvement technologies and adopting best practices from each technology.

A Method to Design a Software
Process Architecture in a
Multimodel Environment:

An Overview

Mery Pesantes
Research Centre in Mathematics (CIMAT, A.C.), Mexico

Jorge Luis Risco Becerra
University of São Paulo – Escola Politécnica, Brazil

Cuauhtémoc Lemus
Research Centre in Mathematics (CIMAT, A.C.), Mexico

1129

A Method to Design a Software Process Architecture
﻿

Problems have arisen within organizations working under this multimodel environment (Kelemen,
Kusters, & Trienekens, 2011), where multiple technologies, which may be used in different ways, ad-
dress the same need with significant overlap. Therefore, the decision to simultaneously adopt multiple
technologies can be complex and can depend as much on how they will be implemented as on their
specific features and benefits.

The need to harmonize technologies emerges as a solution toward working simultaneously with
multiple improvement technologies (Kirwan, Marino, Morley, & Siviy, 2008a; Lawrence, 2009; Pardo,
2010). Currently, there are many harmonization approaches (Calvache, Pino, García, & Piattini, 2009;
Kirwan et al., 2008a), methods and techniques (Halvorsen & Conradi, 2001; Mutafelija & Stromberg,
2003; Wang & King, 2000). Some techniques, such as mapping and comparison, are widely used but
many other techniques have not yet been clearly defined, making harmonization of multiple technologies
a difficult endeavor for organizations.

Software Process Architectures have been recognized as a means to harmonize multiple technologies
within an organization that develops software products (Kirwan et al., 2008a; Kirwan, Marino, Morley, &
Siviy, 2008b). Software process architecture in a multimodel environment is defined as “a set of process
elements and its relationships that support adding, removing or modifying any improvement technol-
ogy and allowing it to be derived from standard processes” (Pesantes, Lemus, Mitre, & Mejia, 2012a).

Several methods have been published to address the problem of how to design a process architec-
ture (Borsoi & Becerra, 2008; Dai, Li, Zhao, Yu, & Huang, 2008; Green & Ould, 1996; Maldonado &
Velázquez, 2006). However, it is unclear how to design a software process architecture that supports a
multimodel software process improvement environment.

This research presents a method to design a software process architecture that supports a multimodel
environment. This method considers creating a software process architecture that will receive as input
a set of harmonized heterogeneous technologies and obtain as output a set of standard processes. It is
based on a statistical thinking approach, analysis method and internal structured analysis technique.

Accordingly, the contents herein are structured as follows: section 2 presents a background of avail-
able efforts regarding methods to design a process architecture. Section 3 presents important aspects
considered to create the method. Section 4 describes the basic concepts of the method. Section 5 shows
the basic constructors of a software process architecture. Section 6 gives a general description of the
method. Section 7 describes the method’s phases, with their respective activities and artifacts. The last
section summarizes conclusions and future works of this research.

1.1 Background

Today, researchers are concerned with understanding and improving the quality of software, which is be-
ing used in a variety of areas and applications and becoming more complex as the functionality required
to provide services is evolving. As software increases in usage, complexity and size, the cost of build-
ing and maintaining it has increased as well. Software exhibits unexpected and undesirable behaviors
that may even cause severe problems and damage that affect its quality. Hence, the software process
approach has emerged to address these concerns and, recently, the research area of process architecture
is emerging with it.

The software process approach is centered on the process through which software is developed. A
software process is defined as “the set of partially ordered steps used to develop or enhance a software
product” (Feiler & Humphrey, 1993). This approach is based on the assumption that there is a direct

23 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/a-method-to-design-a-software-process-

architecture-in-a-multimodel-environment/192916

Related Content

India to China – Repurposing Learning Software across Cultures: Positioning an E-Learning

Framework of a Technical Library Program for Success
Margaret Strong, Bobby Joy, Madhukar Pulluru, Tenya Dongand Edward Zhou (2012). Computer

Engineering: Concepts, Methodologies, Tools and Applications (pp. 1099-1114).

www.irma-international.org/chapter/india-china-repurposing-learning-software/62500

DQ Based Methods: Theory and Application to Engineering and Physical Sciences
Stefania Tomasiello (2012). Handbook of Research on Computational Science and Engineering: Theory

and Practice (pp. 316-346).

www.irma-international.org/chapter/based-methods-theory-application-engineering/60366

Development of Controllers Using Simulink and Contract-Based Design
Pontus Boström, Mikko Huova, Marta (Plaska) Olszewska, Matti Linjama, Mikko Heikkilä, Kaisa Sereand

Marina Waldén (2012). Dependability and Computer Engineering: Concepts for Software-Intensive

Systems (pp. 151-169).

www.irma-international.org/chapter/development-controllers-using-simulink-contract/55328

Threats Classification: State of the Art
Mouna Jouiniand Latifa Ben Arfa Rabai (2018). Computer Systems and Software Engineering: Concepts,

Methodologies, Tools, and Applications (pp. 1851-1876).

www.irma-international.org/chapter/threats-classification/192950

Improvement of RSM Prediction and Optimization by Using Box-Cox Transformation: Separation

of Colloidal Contaminants From Mineral Processing Effluents via Electrocoagulation
Mustafa Çrak (2018). Handbook of Research on Predictive Modeling and Optimization Methods in Science

and Engineering (pp. 156-191).

www.irma-international.org/chapter/improvement-of-rsm-prediction-and-optimization-by-using-box-cox-

transformation/206749

http://www.igi-global.com/chapter/a-method-to-design-a-software-process-architecture-in-a-multimodel-environment/192916
http://www.igi-global.com/chapter/a-method-to-design-a-software-process-architecture-in-a-multimodel-environment/192916
http://www.irma-international.org/chapter/india-china-repurposing-learning-software/62500
http://www.irma-international.org/chapter/based-methods-theory-application-engineering/60366
http://www.irma-international.org/chapter/development-controllers-using-simulink-contract/55328
http://www.irma-international.org/chapter/threats-classification/192950
http://www.irma-international.org/chapter/improvement-of-rsm-prediction-and-optimization-by-using-box-cox-transformation/206749
http://www.irma-international.org/chapter/improvement-of-rsm-prediction-and-optimization-by-using-box-cox-transformation/206749

