
1763

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 73

DOI: 10.4018/978-1-5225-3923-0.ch073

ABSTRACT

A major challenge to teaching software engineering is achieving functioning teams that enforce indi-
vidual accountability while integrating software engineering principles, approaches, and techniques.
The two-semester software engineering course at the University of Texas at El Paso, referred to as the
Team-Oriented Software Engineering (TOSE) course, establishes communities of practice that are cul-
tivated through cooperative group practices and an improvement process model that enables learning
from past experiences. The experience of working with incomplete, ambiguous, and changing software
requirements motivates the need for applying disciplined software engineering practices and approaches
throughout project development. Over the course of the two-semester sequence, the nature of students’
participation in project teams changes: they begin to influence others in software engineering practice,
and their identities as software engineers begins to develop. The purpose of the chapter is to describe
how to structure a software engineering course that results in establishing communities of practice in
which learners become increasingly more knowledgeable team members who embody the skills needed
to work effectively in a team- and project-based environment.

Developing Communities
of Practice to Prepare

Software Engineers With
Effective Team Skills

Ann Q. Gates
The University of Texas – El Paso, USA

Elsa Y. Villa
The University of Texas – El Paso, USA

Salamah Salamah
The University of Texas – El Paso, USA

1764

Developing Communities of Practice to Prepare Software Engineers

INTRODUCTION

A long-standing problem when teaching software engineering is achieving functioning teams that enforce
individual accountability. Working as teams, students complete a large project while going through the
appropriate training in team skills. The human aspect of software development also makes teaching
software engineering and managing student-run projects challenging because of the following:

• General lack of maturity in the students’ team and communication skills,
• Difficulty in ensuring that all team members contribute to the project,
• Differences in students’ experiences and understanding, and
• Difficulty in evaluating and ensuring individual and team progress and work quality.

A two-semester, software engineering course, referred to as the Team-Oriented Software Engineering
(TOSE) course, at the University of Texas at El Paso (UTEP) addresses these challenges by incorporat-
ing cooperative-learning principles with an aim of establishing a community of practice. Cooperative
learning as an instructional approach (Johnson, Johnson, & Holubec, 1992; Johnson, Johnson, & Smith,
1991) is an evidence-based practice that contributes to team building while increasing student achieve-
ment and self-esteem (Johnson & Johnson, 1989). Using cooperative learning principles to structure
groups generates positive interdependence in which each member is committed to supporting others in
reaching their goals while at the same time working together to meet the group goal. The emphasis on
cooperative behavior cultivates an environment in the software engineering course where communities of
practice can emerge and grow. Drawing from the work of Lave and Wenger (1991) and Wenger (1998),
a community of practice is defined as a group of individuals who share a common purpose, contribute
to each other’s success, and develop shared practices that identify them as members of that group.

The purpose of the chapter is to describe how structuring a software engineering course using co-
operative learning principles results in establishing communities of practice in which learners become
increasingly more knowledgeable team members who embody the skills needed to work effectively in a
team- and project-based environment. The objectives of the chapter are to: (1) present the challenges in
developing functional teams; (2) outline how to structure a software engineering course in which teams
move toward becoming a community of practice; and (3) describe how a community of practice serves
to support functioning and practicing software engineers.

BACKGROUND

Overview

In the perspective of this chapter, cooperative learning is at the core of building functional and effective
teams for addressing the issues, challenges, and concerns of ineffective student teams typically result-
ing from ill-structured group work (rather than team work). In such group work, a task is given to the
group with the hope, for example, that group members will resolve any conflicts on their own and allow
for a “leader” to emerge who can take charge. When groups are structured in this manner, those who
are “followers” minimally contribute to deliverables and may be marginalized by the others. Rather, a

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/developing-communities-of-practice-to-prepare-

software-engineers-with-effective-team-skills/192946

Related Content

Analyzing Coordinate Relations in Handwriting Activity: Tacit Skill and Individuality
Yusuke Manabeand Kenji Sugawara (2011). Kansei Engineering and Soft Computing: Theory and Practice

(pp. 287-302).

www.irma-international.org/chapter/analyzing-coordinate-relations-handwriting-activity/46404

Low-Power High-Speed Eight-Bit Universal Shift Register Design Using Clock Gating Technique
Preeti Sahu (2023). Energy Systems Design for Low-Power Computing (pp. 29-43).

www.irma-international.org/chapter/low-power-high-speed-eight-bit-universal-shift-register-design-using-clock-gating-

technique/319988

From Virtual to Physical Problem Solving in Coding: A Comparison on Various Multi-Modal

Coding Tools for Children Using the Framework of Problem Solving
Kening Zhu (2021). Research Anthology on Recent Trends, Tools, and Implications of Computer

Programming (pp. 677-694).

www.irma-international.org/chapter/from-virtual-to-physical-problem-solving-in-coding/261049

A Comprehensive Report on Security and Privacy Challenges in Software as a Service
Pradeep Kumar Tiwariand Sandeep Joshi (2018). Multidisciplinary Approaches to Service-Oriented

Engineering (pp. 143-167).

www.irma-international.org/chapter/a-comprehensive-report-on-security-and-privacy-challenges-in-software-as-a-

service/205297

Reverse Engineering of Object-Oriented Code: An ADM Approach
Liliana Favre, Liliana Martinezand Claudia Pereira (2018). Computer Systems and Software Engineering:

Concepts, Methodologies, Tools, and Applications (pp. 1479-1502).

www.irma-international.org/chapter/reverse-engineering-of-object-oriented-code/192932

http://www.igi-global.com/chapter/developing-communities-of-practice-to-prepare-software-engineers-with-effective-team-skills/192946
http://www.igi-global.com/chapter/developing-communities-of-practice-to-prepare-software-engineers-with-effective-team-skills/192946
http://www.irma-international.org/chapter/analyzing-coordinate-relations-handwriting-activity/46404
http://www.irma-international.org/chapter/low-power-high-speed-eight-bit-universal-shift-register-design-using-clock-gating-technique/319988
http://www.irma-international.org/chapter/low-power-high-speed-eight-bit-universal-shift-register-design-using-clock-gating-technique/319988
http://www.irma-international.org/chapter/from-virtual-to-physical-problem-solving-in-coding/261049
http://www.irma-international.org/chapter/a-comprehensive-report-on-security-and-privacy-challenges-in-software-as-a-service/205297
http://www.irma-international.org/chapter/a-comprehensive-report-on-security-and-privacy-challenges-in-software-as-a-service/205297
http://www.irma-international.org/chapter/reverse-engineering-of-object-oriented-code/192932

