
318

Chapter XV
Compiling Business Process
Models into Executable Code

Cesare Pautasso
University of Lugano, Switzerland

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract

Model-driven architecture (MDA), design and transformation techniques can be applied with success to
the domain of business process modeling (BPM) with the goal of making the vision of business-driven
development a reality. This chapter is centered on the idea of compiling business process models for
executing them, and how this idea has been driving the design of the JOpera for Eclipse workflow man-
agement tool. JOpera presents users with a simple, graph-based process modeling language with a visual
representation of both control and data-flow aspects. As an intermediate representation, the graphs are
converted into Event-Condition-Action rules, which are further compiled into Java bytecode for efficient
execution. These transformations of process models are performed by the JOpera process compiler in a
completely transparent way, where the generated executable artefacts are kept hidden from users at all
times (i.e., even for debugging process executions, which is done by augmenting the original, high level
notation). The author evaluates his approach by discussing how using a compiler has opened up the
several possibilities for performing optimization on the generated code and also simplified the design
the corresponding workflow engine architecture.

Introduction

The goal of this chapter is to present how model
transformation and refinement techniques can
be applied to produce executable code out of
business process models. The chapter shows how

model-driven architecture (MDA) techniques
have been applied with success to the domain of
business process modeling. More in detail, once
a business process has been modeled using some
language, there are two main alternatives to be
considered in order to run the process model

 319

Compiling Business Process Models into Executable Code

using a workflow execution engine (Figure 1).
The first involves the direct interpretation of the
model, the second the compilation of the model
into a lower-level representation amenable to more
efficient execution.

As an example case study, the chapter shows
how the idea of compiling business process
models has been driving the design of the JOpera
for Eclipse workflow management tool. JOpera
presents users with a simple, graph-based process
modeling language with a visual representation of
both control and data-flow aspects. As an interme-
diate representation, the graphs are converted into
Event-Condition-Action rules, which are further
compiled into Java bytecode for execution.

These transformations have been fully imple-
mented in the JOpera process compiler in a com-
pletely transparent way, where the generated Java
executable artifacts are kept hidden from users at
all times (i.e., even for debugging process execu-
tions, which is done using the original, high level
notation). We evaluate our approach by discussing
how using a compiler has opened up the several
possibilities for performing optimization on the

generated code and also simplified the design and
positively impacted the quality of the correspond-
ing workflow engine architecture.

This chapter introduces with an example
a hierarchy of business process meta-models,
leading from abstract, high level and graphical
representations suitable for human consumption,
down to lower-level languages geared towards
efficient execution by a machine. Whereas for
didactical purposes (and space limitations) the
example presented in this chapter is focused on
representations for modeling control-flow aspects,
JOpera follows a similar approach with respect
to the data flow and the resource perspective of
the workflow models. We define relationships
and transformations between the representations,
in order to support the automatic refinement,
optimization and compilation of models in one
direction. We also present the abstraction opera-
tions required in the reverse direction in order to
provide support for “source-level” monitoring and
interactive debugging of the execution of business
process models.

The rest of this chapter is structured as fol-
lows. A motivation for introducing process com-

Figure 1. Interpreted (left) vs. compiled (right) process execution

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/compiling-business-process-models-into/19699

Related Content

Optimal Release Policy for Multi-Release Software System
Anu G. Aggarwal, Chandra K. Jaggiand Nidhi Nijhawan (2017). International Journal of Operations

Research and Information Systems (pp. 21-38).

www.irma-international.org/article/optimal-release-policy-for-multi-release-software-system/183689

Modeling and Methodology for Incorporating Existing Technologies to Produce Higher

Probabilities of Detecting Suicide Bombers
William P. Fox, John Binstockand Mike Minutas (2013). International Journal of Operations Research and

Information Systems (pp. 1-18).

www.irma-international.org/article/modeling-and-methodology-for-incorporating-existing-technologies-to-produce-higher-

probabilities-of-detecting-suicide-bombers/93065

Digital Transformation Towards a New Context of Labour: Enterprise 4.0
Maria João Ferreira, Fernando Moreiraand Isabel Seruca (2019). Technological Developments in Industry

4.0 for Business Applications (pp. 26-49).

www.irma-international.org/chapter/digital-transformation-towards-a-new-context-of-labour/210478

Business Policy: A Systems Approach to Corporate Governing
Pedro B. Águaand Andre Vilares Morgado (2020). Dynamic Strategic Thinking for Improved

Competitiveness and Performance (pp. 216-242).

www.irma-international.org/chapter/business-policy/257866

Optimal Policies for Items With Quadratic Demand and Time-Dependent Deterioration Under

Two Echelon Trade Credits
Azharuddin Sarfuddin Shaikhand Poonam Prakash Mishra (2018). Handbook of Research on Promoting

Business Process Improvement Through Inventory Control Techniques (pp. 32-43).

www.irma-international.org/chapter/optimal-policies-for-items-with-quadratic-demand-and-time-dependent-deterioration-

under-two-echelon-trade-credits/198682

http://www.igi-global.com/chapter/compiling-business-process-models-into/19699
http://www.irma-international.org/article/optimal-release-policy-for-multi-release-software-system/183689
http://www.irma-international.org/article/modeling-and-methodology-for-incorporating-existing-technologies-to-produce-higher-probabilities-of-detecting-suicide-bombers/93065
http://www.irma-international.org/article/modeling-and-methodology-for-incorporating-existing-technologies-to-produce-higher-probabilities-of-detecting-suicide-bombers/93065
http://www.irma-international.org/chapter/digital-transformation-towards-a-new-context-of-labour/210478
http://www.irma-international.org/chapter/business-policy/257866
http://www.irma-international.org/chapter/optimal-policies-for-items-with-quadratic-demand-and-time-dependent-deterioration-under-two-echelon-trade-credits/198682
http://www.irma-international.org/chapter/optimal-policies-for-items-with-quadratic-demand-and-time-dependent-deterioration-under-two-echelon-trade-credits/198682

