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ABSTRACT

This chapter introduces a novel swarm-intelligence-based algorithm named the 
comprehensive learning particle swarm optimization (CLPSO) to identify parameters 
of structural systems, which is formulated as a high-dimensional multi-modal 
numerical optimization problem. With the new strategy in this variant of particle 
swarm optimization (PSO), historical best information for all other particles is used 
to update a particle’s velocity. This means that the particles have more exemplars 
to learn from and a larger potential space to fly, avoiding premature convergence. 
Simulation results for identifying the parameters of a five degree-of-freedom (DOF) 
structural system under conditions including limited output data, noise polluted 
signals, and no prior knowledge of mass, damping, or stiffness are presented to 
demonstrate improved estimation of these parameters by CLPSO when compared 
with those obtained from PSO. In addition, the efficiency and applicability of the 
proposed method are experimentally examined by a 12-story shear building shaking 
table model.
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INTRODUCTION

Nowadays, system identification with good accuracy and general practicality is quite 
a significant tool for assessing the performance of structures in civil engineering. 
The goal of system identification is to estimate the “best” set of parameter values, 
which minimizes the error between the actual physically measured response of 
a system and the simulated response. This parameter estimation problem can be 
formulated as a non-convex, nonlinear optimization problem, and can therefore be 
solved using global optimization techniques.

Recently, some researchers tried to use some sort of heuristic intelligent 
optimization algorithms to tackle system identification problems with limited and noise 
contaminated measurements. Simulated annealing (SA) have been implemented for 
model updating techniques that optimize a finite element model to accurately describe 
the dynamic behaviour of structures (Levin & Lieven, 1998). Genetic algorithm 
(GA) have been successfully applied to the identification of the elastic constants of 
composite materials (Cunha et al., 1999) and the main properties of a base-isolated 
concrete bridge under static and dynamic loading conditions (Chisari et al., 2015). 
Evolution strategy (ES) algorithms have been presented for the identification of 
multiple degree-of-freedom (DOF) systems (Franco et al., 2004). Tang et al.(2008) 
have applied a differential evolution (DE) strategy to parameters estimation of 
structural systems. Particularly, in the field of structural damage detection, GA has 
been used to identify damage severity of trusses (Chou & Ghaboussi, 2001), to detect 
crack in structural elements (Buezas et al., 2011) and to solve the global system 
identification problem in shear-type building structures. These references (Koh et 
al., 2003; Perry et al., 2006) have presented a modified GA based on migration and 
artificial selection strategies to improve the computational performance in terms 
of identification accuracy and computational speed. An approach based on GA 
combined with artificial neural networks has been employed for damage detection 
on a three-story steel frame (Betti et al., 2015). Although many GA versions have 
been developed, they are still time consuming. SA has proven to be thorough and 
reliable, but is generally too slow and inefficient to be of practical use with larger 
modelling problems (Mayer, 2002).

In the past decades, swarm intelligence algorithms have received a lot of 
attention in optimization problems (Piotrowski et al., 2017). As a novel evolutionary 
computation technique, particle swarm optimization (PSO) (Kennedy & Eberhart, 
1995) has attracted much attention and has wide applications, owing to its simple 
concept, easy implementation and quick convergence (Poli et al., 2007; Banks et al., 
2008; Der Valle et al., 2008). PSO works to iteratively improve a swarm of candidate 
solutions, which are called particles, in the case of an objective function. PSO has 
been successfully applied in many fields, such as function optimization, fuzzy 
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