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ABSTRACT

Given are the m points (x
i
,y

i
), i=1,2,…,m. Spline functions are introduced, and it is noticed that

the interpolation task in the case of  natural splines has a unique solution. The interpolating
natural cubic spline is constructed. For the construction of smoothing splines, different
optimization problems are formulated. A selected problem is looked at in detail. The
construction of the solution is carried out in two steps. In the first step the unknown D

i
=s(x

i
)

are calculated via a linear system of equations. The second step is the construction of the
interpolating natural cubic spline with respect to these (x

i
,D

i
), i=1,2,…,m. Every optimization

problem contains a smoothing parameter. A method of estimation of the smoothing parameter
from the given data is motivated briefly.

INTRODUCTION

Model fitting in data mining requires the atten-
tion of at least three aspects: the data, the model
to be fitted, and the optimization criterion. This
general situation is specified for simplicity as
follows. The data are a two-dimensional set of
real numbers (x

i
,y

i
), i = 1, 2, ..., m, and the model

is a class of spline functions. Selected optimiza-
tion criteria are subsequently explained.

Spline functions are a class of functions that
is characterized by general mathematical prop-
erties, instead of data-driven or problem-driven

properties. Their application is widespread.
There are multidimensional splines and many
mathematical generalizations, too, especially
on Hilbert spaces.

Spline fitting involves the calculation of the
parameters of the chosen spline function from
the given data. The data, the class of the
functions, and the optimization criterion deter-
mined the calculation method for the param-
eters of the spline function.

Let (x
i
,y

i
), i = 1, 2, …, m be given. We

assume that x
1
<x

2
<x

3
<...<x

m
.
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Spline Fitting

DEFINITION

A spline function s(x) of degree n is a func-
tion defined on �. s(x) is given by some
polynomial of degree n or less in each of the
intervals (-∞,x

1
], [x

i
,x

i+1
], i = 1, 2, …, m-1,

and [x
m
,+∞). All derivatives of s(x) up to

order n-1 are supposed to be continuous every-
where. s(x) is called a natural spline if n = 2k-
1 is odd and s(x) is given in each of the intervals
(-∞,x

1
] and [x

m
,+∞) by polynomials of degree

k-1 or less.
For example, the class of all splines of

degree n withthe knots x
i
 includes all polynomi-

als of degree n or less.

INTERPOLATION

A special task of curve fitting is the interpola-
tion problem. One looks for a function f(x)
satisfying the strong conditions f(x

i
) = y

i
 for all

i from 1 to m.
The interpolation problem has a unique solu-

tion for natural splines s(x). The main property
of natural splines is proved by deBoor (2001)
and Schoenberg and deBoor. In the case n = 3,
the result was given already by Holladay (1957).

THEOREM

Let s(x) be the interpolating natural spline of
degree n = 2k-1, with respect to (x

i
, y

i
), i = 1, 2,

..., m, and f(x) any interpolating function with
continuous derivatives up to order k. Then

∫∫ ≤
b

a

k
b

a

k dxxfdxxs 2)(2)( )()(  for all a ≤ x
1
 and b ≥ x

m
.

In the case where k > 1, the strong inequality
is valid.

We furthermore refer to natural cubic splines
because they are widely used. It is possible to

generalize the afterward-derived calculation
procedure of the parameters of a natural cubic
spline to arbitrary natural splines.

Looking at the definition, a cubic spline can
be written in the interval [x

i
,x

i+1
] as:

s(x) = A
i
(x-x

i
)3 + B

i
(x-x

i
)3 + C

i
(x-x

i
) +D

i
.

Obviously,

s(x
i
) = D

i 
= y

i
, i=1, 2, ..., m-1.      (1)

Furthermore, it follows that s”(x
i
) = 2B

i
, and

so:

B
i 
= s”(x

i
)/2.      (2)

The second derivation s"(x) is a straight line
with the slope (s"(x

i+1
)-s"(x

i
))/(x

i+1
-x

i
). Conse-

quently, one obtains:

A
i 
= 1/3(B

i+1
-B

i
))/(x

i+1
-x

i
)      (3)

for all i = 1, 2, …, m-1.
The C

i
 can be represented with the data and

the B
i 
 as:

C
i
=(y

i+1
-y

i
)/(x

i+1
-x

i
) - 1/3(x

i+1
-x

i
)(2 B

i+1
+B

i
)

     (4)

as seen in Equations (1), (2), and (3).
From these considerations it follows that an

interpolating cubic spline is uniquely deter-
mined and completely represented by (x

i
,s(x

i
))

and B
i
 (especially B

m
= s"(x

m
)/2). One uses the

continuity of s'(x) in the x
i
, i=1, 2, ..., m to

calculate the unknown B
i
. Consequently:

s’(x
i
) = 3A

i-1
(x

i
-x

i-1
)2 + 2B

i-1
(x

i
-x

i-1
) + C

i-1
 =

     C
i
, i = 2, 3, ..., m-1

holds true. Short remodeling together with the
specifications ∆x

i 
:= x

i+1
-x

i
 and ∆y

i 
:= y

i+1
-y

i
, i =

1, 2, ..., m-1 leads to:
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