
551

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 22

DOI: 10.4018/978-1-5225-5643-5.ch022

ABSTRACT

This chapter presents a security engineering process based on UML security problem frames and con-
cretized UML security problem frames. Both kinds of frames constitute patterns for analyzing security
problems and associated solution approaches. They are arranged in a pattern system that makes depen-
dencies between them explicit. The authors describe step-by-step how the pattern system can be used to
analyze a given security problem and how solution approaches can be found. Then, solution approaches
are specified by generic security components and generic security architectures, which constitute ar-
chitectural patterns. Finally, the generic security components and the generic security architecture
that composes them are refined, and the result is a secure software product built from existing and/or
tailor-made security components.

INTRODUCTION

It is acknowledged that a thorough requirements engineering phase is essential to develop a software
product that matches the specified requirements. This is especially true for security requirements.

We propose a security engineering process that focuses on the early phases of software development
covering security requirements and security architectures. The basic idea is to make use of special pat-
terns for security requirements analysis and development of security architectures.

Security requirements analysis makes use of patterns for structuring, characterizing, and analyzing
problems that frequently occur in security engineering. Similar patterns for functional requirements have

Developing Secure Software
Using UML Patterns

Holger Schmidt
TÜV Informationstechnik GmbH, Germany

Denis Hatebur
University Duisburg-Essen, Germany, & ITESYS Institut für Technische Systeme GmbH, Germany

Maritta Heisel
University Duisburg-Essen, Germany

552

Developing Secure Software Using UML Patterns

been proposed by Jackson (2001). They are called problem frames. Accordingly, our patterns are named
security problem frames. Furthermore, for each of these frames, we have defined a set of concretized
security problem frames that take into account generic security mechanisms to prepare the ground for
solving a given security problem. Both kinds of patterns are arranged in a pattern system that makes
dependencies between them explicit. We describe how the pattern system can be used to analyze a given
security problem, how solution approaches can be found, and how dependent security requirements can
be identified.

Afterwards, we develop a corresponding security architecture based on platform-independent generic
security components and generic security architectures. Each concretized security problem frame is
equipped with a set of generic security architectures that represent the internal structure of the software
to be built by means of a set of generic security components. After a generic security architecture and
generic security components are selected, the latter must be refined to platform-specific security com-
ponents. For example, existing component frameworks can be used to construct a platform-specific
security architecture that realizes the initial security requirements.

The rest of the chapter is organized as follows: First, we introduce problem frames and present a
literature review. Second, we give an overview of our security engineering process. Then we present the
different development phases of the process in detail. Each phase of our process is demonstrated using
the example of a secure text editor application. Finally, we outline future research directions and give a
summary and a discussion of our work.

BACKGROUND

In the following, we first present problem frames and second, we discuss our work in the context of other
approaches to security engineering.

Problem Frames

Patterns are a means to reuse software development knowledge on different levels of abstraction. They
classify sets of software development problems or solutions that share the same structure. Patterns are
defined for different activities at different stages of the software life-cycle. Problem frames by Jackson
(2001) are a means to analyze and classify software development problems. Architectural styles are pat-
terns that characterize software architectures (for details see (Bass & Clements & Kazman, 1998) and
(Shaw & Garlan (1996)). Design patterns by Gamma, Helm, Johnson, and Vlissides (1995) are used for
finer-grained software design, while idioms by Coplien (1992) are low-level patterns related to specific
programming languages.

Using patterns, we can hope to construct software in a systematic way, making use of a body of ac-
cumulated knowledge, instead of starting from scratch each time. The problem frames defined by Jackson
(2001) cover a large number of software development problems, because they are quite general in nature.
Their support is of great value in the area of software engineering. Jackson (2001) describes them as
follows: „A problem frame is a kind of pattern. It defines an intuitively identifiable problem class in
terms of its context and the characteristics of its domains, interfaces, and requirement.” (p. 76). Jackson
introduces five basic problem frames named required behaviour, commanded behaviour, information
display, simple workpieces, and transformation.

40 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/developing-secure-software-using-uml-

patterns/205799

Related Content

A Conceptual Security Framework for Cloud Computing Issues
Shadi A. Aljawarnehand Muneer O. Bani Yassein (2016). International Journal of Intelligent Information

Technologies (pp. 12-24).

www.irma-international.org/article/a-conceptual-security-framework-for-cloud-computing-issues/152303

Artificial Intelligence: The Best Fit or a Misfit in the Job Fit Analysis
Jayti Mahajan, Suman Dahiyaand Puja Narang (2022). Revolutionizing Business Practices Through

Artificial Intelligence and Data-Rich Environments (pp. 217-236).

www.irma-international.org/chapter/artificial-intelligence/311193

Fuzzy Lattice Ordered G-modules
Ursala Pauland Paul Isaac (2019). International Journal of Fuzzy System Applications (pp. 94-107).

www.irma-international.org/article/fuzzy-lattice-ordered-g-modules/233588

A New Fuzzy Process Capability Index for Asymmetric Tolerance Interval
Zainab Abbasi Ganjiand Bahram Sadeghpour Gildeh (2017). International Journal of Fuzzy System

Applications (pp. 74-104).

www.irma-international.org/article/a-new-fuzzy-process-capability-index-for-asymmetric-tolerance-interval/182227

Protein Structure Prediction by Fusion,Bayesian Methods
Somasheker Akkaladevi, Ajay K. Katangurand Xin Luo (2009). Encyclopedia of Artificial Intelligence (pp.

1330-1336).

www.irma-international.org/chapter/protein-structure-prediction-fusion-bayesian/10412

http://www.igi-global.com/chapter/developing-secure-software-using-uml-patterns/205799
http://www.igi-global.com/chapter/developing-secure-software-using-uml-patterns/205799
http://www.irma-international.org/article/a-conceptual-security-framework-for-cloud-computing-issues/152303
http://www.irma-international.org/chapter/artificial-intelligence/311193
http://www.irma-international.org/article/fuzzy-lattice-ordered-g-modules/233588
http://www.irma-international.org/article/a-new-fuzzy-process-capability-index-for-asymmetric-tolerance-interval/182227
http://www.irma-international.org/chapter/protein-structure-prediction-fusion-bayesian/10412

