
 ��

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

IntroductIon

Legacy systems, from a data-centric view, could
be defined as old, business-critical, and stand-
alone systems that have been built around legacy
databases, such as IMS or CODASYL, or legacy
database management systems, such as ISAM
(Brodie & Stonebraker, 1995). Because of the
huge scope of legacy systems in the business world
(it is estimated that there are 100 billion lines of
COBOL code alone for legacy business systems;
Bianchi, 2000), data reengineering, along with its
related step of program reengineering, of legacy
systems and their data constitute a significant part
of the software reengineering market.

Data reengineering of legacy systems focuses
on two parts. The first step involves recognizing
the data structures and semantics followed by the
second step where the data are converted to the
new or converted system. Usually, the second step
involves substantial changes not only to the data
structures but to the data values of the legacy data
themselves (Aebi & Largo, 1994).

Borstlap (2006), among others, has identified
potential problems in retargeting legacy ISAM

data files to a relational database. Aebi (1997), in
addition to data transformation logic (converting
sequential file data entities into their relational
database equivalents), looks into, as well, data
quality problems (such as duplicate data and incor-
rect data) that is often found with legacy data.

Due to the fact that the database and the program
manipulating the data in the database are so closely
coupled, any data reengineering must address the
modifications to the program’s data access logic
that the database reengineering involves (Hainaut,
Chandelon, Tonneau, & Joris, 1993).

In this article, we will discuss some of the re-
cent research into data reengineering, in particular
the transformation of data, usually legacy data
from a sequential file system, to a different type
of database system, a relational database. This
article outlines the various methods used in data
reengineering to transform a legacy database (both
its structure and data values), usually stored as
sequential files, into a relational database structure.
In addition, methods are outlined to transform the
program logic that accesses this database to access
it in a relational way using WSL (wide spectrum
language, a formal language notation for software)
as the program’s intermediate representation.

Chapter V
Data Reengineering of Legacy

Systems
Richard C. Millham

Catholic University of Ghana, Ghana

��

Data Reengineering of Legacy Systems

related work

In this section, we briefly describe the various ap-
proaches that various researchers have proposed
and undertaken in the reengineering of legacy
data. Tilley and Smith (1995) discuss the reverse
engineering of legacy systems from various ap-
proaches: software, system, managerial, evolution,
and maintenance.

Because any data reengineering should address
the subsequent modifications to the program that
the program’s data access’ logic entails, Hainaut
et al. (1993) have proposed a method to transform
this data access logic, in the form of COBOL
read statements, into their corresponding SQL
relational database equivalents.

Hainaut et al. (1993) identify two forms of
database conversion strategies. One strategy
(physical conversion) is the physical conversion
of the database where each construct of the source
database is translated into the closest correspond-
ing construct of the target database without any
consideration of the semantic meaning of the
data being translated. One of the problems with
this strategy is that the resulting target database
produced is of very low quality. The second
strategy (conceptual conversion) is the recovery
of precise semantic information, the conceptual
schema, of the source database through various
reverse engineering techniques, and then the
development of the target database, using this
conceptual schema, using standard database de-
velopment techniques. This strategy produces a
higher quality database with full documentation
as to the semantic meaning of the legacy data, but
this approach is more expensive in terms of time
and effort that it entails (Hainaut et al., 1993a).
Hainaut et al.’s approach first uses the physical
conversion strategy to convert data and then uses
a trace of the program, which accesses the legacy
data, in order to determine how the data are used
and managed. In this way, additional structures and
constraints are identified through the procedural
code. Through an analysis of the application’s
variable dependency graph and of the record and
file definitions, data fields are refined, foreign keys

are determined, and constraints on multivalued
fields are discovered. During the database con-
ceptualization phase, the application’s physical
constructs of indexes and files are removed and the
program’s objects of arrays, data types, fields, and
foreign keys are transformed into their database
equivalents (Hainaut et al., 1993a).

Initially, database reengineering focused on
recognizing the legacy database structure and
transforming these structures into a new model
(Aiken & Muntz, 1993; Joris, 1992; Pomerlani &
Blaha, 1993; Sabanis & Stevenson, 1992). The
values of legacy data were used solely to identify
the legacy system’s dependencies in terms of keys
between records (Pomerlani & Blaha).

Aebi and Largo (1994), in the transformation of
database structures, recognize that the transforma-
tion of structural schemas involves many issues.
The first issue is that the different attributes and
entities of the old system must be mapped to the
new schema of the transformed database. Con-
straints, during the migration from the old to the
new system, may be added, dropped, or changed.
Entity sets in the new system may be identified by
new attributes or by old attributes with changed
domains or data types.

Wu et al. (1997), with their “butterfly” ap-
proach, assume that the legacy data are the most
important part of the legacy system and it is the
schema rather than the values of this legacy data
that are the most crucial. This legacy data are
modified in successive iterations with the legacy
data being frozen and used for reading purposes
only. The “Chicken Little” strategy allows the
legacy system to interact with the target system
during migration, using a gateway to serve as a
mediator. This gateway is used to translate and
redirect calls from the legacy system to the target
database system, and then the gateway translates
the results of the target database for use by the
legacy system and by the legacy database. Al-
though the legacy system is allowed to interact
with the target database during migration, each data
access involves two database accesses: one to the
target database and another to the legacy database
(Bisbal, Lawless, Wu, & Grimson, 1999).

6 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/data-reengineering-legacy-systems/20686

Related Content

An Open ECA Server for Active Applications
Florian Danieland Giuseppe Pozzi (2008). Journal of Database Management (pp. 1-20).

www.irma-international.org/article/open-eca-server-active-applications/3392

Signature Files and Signature File Construction
Yangjun Chenand Yong Shi (2005). Encyclopedia of Database Technologies and Applications (pp. 638-

645).

www.irma-international.org/chapter/signature-files-signature-file-construction/11217

Politically Oriented Database Applications
Francisco A.C. Pinheiro (2009). Handbook of Research on Innovations in Database Technologies and

Applications: Current and Future Trends (pp. 214-220).

www.irma-international.org/chapter/politically-oriented-database-applications/20706

Management of Large Moving Objects Databases: Indexing, Benchmarking and Uncertainty in

Movement Representation
Talel Abdessalem, Cédric du Mouza, José Moreiraand Philippe Rigaux (2005). Spatial Databases:

Technologies, Techniques and Trends (pp. 225-250).

www.irma-international.org/chapter/management-large-moving-objects-databases/29666

Beyond Open Source: The Business of ‘Whole' Software Solutions
Joseph Feller, Patrick Finneganand Jeremy Hayes (2010). Principle Advancements in Database

Management Technologies: New Applications and Frameworks (pp. 335-349).

www.irma-international.org/chapter/beyond-open-source/39363

http://www.igi-global.com/chapter/data-reengineering-legacy-systems/20686
http://www.irma-international.org/article/open-eca-server-active-applications/3392
http://www.irma-international.org/chapter/signature-files-signature-file-construction/11217
http://www.irma-international.org/chapter/politically-oriented-database-applications/20706
http://www.irma-international.org/chapter/management-large-moving-objects-databases/29666
http://www.irma-international.org/chapter/beyond-open-source/39363

