
 769

Chapter LXXXII
A Novel Crash Recovery
Scheme for Distributed
Real-Time Databases

Yingyuan Xiao
Tianjin University of Technology, China

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Recently, the demand for real-time data services
has been increasing (Aslinger & Son, 2005). Many
applications such as online stock trading, agile
manufacturing, traffic control, target tracking,
network management, and so forth, require the
support of a distributed real-time database system
(DRTDBS). Typically, these applications need
predictable response time, and they often have
to process various kinds of queries in a timely
fashion. A DRTDBS is defined as a distributed
database system within which transactions and
data have timing characteristics or explicit timing
constraints and system correctness that depend
not only on the logic results but also on the time
at which the logic results are produced. Similar

to conventional real-time systems, transactions
in DRTDBSs are usually associated with timing
constraints. On the other hand, a DRTDBS must
maintain databases for useful information, support
the manipulation of the databases, and process
transactions. Timing constraints of transactions
in a DRTDBS are typically specified in the
form of deadlines that require a transaction to
be completed by a specified time. For soft real-
time transactions, failure to meet a deadline can
cause the results to lose their value, and for firm
or hard real-time transactions, a result produced
too late may be useless or harmful. DRTDBSs
often process both temporal data that lose validity
after their period of validity and persistent data
that remain valid regardless of time. In order to
meet the timing constraints of transactions and

770

A Novel Crash Recovery Scheme for Distributed Real-Time Databases

data, DRTDBSs usually adopt main memory
database (MMDB) as their ground support. In an
MMDB, “working copy” of a database is placed
in the main memory, and a “secondary copy” of
the database on disks serves as backup. Data I/O
can be eliminated during a transaction execu-
tion by adopting an MMDB so that a substantial
performance improvement can be achieved. We
define a DRTDBS integrating MMDB as a dis-
tributed real-time main memory database system
(DRTMMDBS).

The existing researches on DRTDBS focus
mainly on concurrency control (Gustafsson,
Hallqvist & Hansson, 2005; Lam, Kuo, Tsang &
Law, 2000; Ulusoy, 1993), replication (Aslinger
& Son, 2005; Son & Kouloumbis, 1993; Ulusoy,
1994), and commitment (Haritsa, Ramamritham
& Gupta, 2000; Qin & Liu, 2003; Xiao, Liu, Deng
& Liao, 2006). The studies of failure recovery for
a DRTMMDBS are relatively scarce. However,
due to the complexity of distributed environ-
ments together with volatility and vulnerability
of the main memory, the possibility of failure in
a DRTMMDBS becomes much larger than in
centralized disk resident database systems. When
a site crash occurs, as the databases are not avail-
able for transactions, many transactions may miss
deadlines, and a large amount of temporal data
may lose their validity before they can be used,
so a DRTMMDBS should have the ability of high
fault-tolerance and can resume services again as
quickly as possible after crashes.

BACKGROUND

The traditional sequential logging and disk-
based recovery techniques cannot meet the high
performance requirement of a DRTMMDBS. To
aim at real-time databases, some failure recov-
ery methods have been put forward. Choi, et al.
(2000) presented a parallel processing architecture
adopting double-CPU. In this architecture, one
CPU, which is called a DP, is responsible for usual

transaction processing, while another CPU, called
an RP, is only responsible for recovery processing
such as logging, checkpoint, and failure recovery.
This architecture has better performances than
the traditional single CPU, but the utilization of
RP is not high. Sivasankaran, Ramamritham,
Stankovic, and Towsley (1995) analyzed the
characteristics of data in real-time databases and
discussed the strategies of logging and recovery in
real-time active databases. To solve the problem
of low efficiency of the sequential permanent
logging, partitioned logging and ephemeral log-
ging have been proposed, respectively (Agrawal
& Jagadish, 1989; Lam & Kuo, 2001). Partitioned
logging stores log records according to transaction
class (data class); that is, the log records belong-
ing to a different transaction class (data class) are
stored in different partitions. Partitioned logging
can avoid the performance bottleneck caused
by severe contention for single logging store
partition. However, the problems such as how to
classify transactions (data), how to standardize
logging partitions, and how to recover database
systems to the correct and consistent state after
failures must be solved for partitioned logging.
Ephemeral logging does not have to keep log re-
cords permanently. For ephemeral logging, when
a transaction commits, the data buffers modified
by the transaction need to be flushed into stable
storage devices. So the log records may be deleted
as soon as the corresponding transactions com-
mit. The advantage of ephemeral logging is that
the log processing time after failures is reduced
prominently, while the disadvantages lie with
the lack of permanent logs and inconvenience in
auditing and tracing. Liu, Amman, and Jajodia
(2000) gave the technique of accelerating recovery
speed, but the technique still requires stopping
the system services in entire recovery process.
For MMDBs, shadow paging recovery schemes
have been proposed (Kim & Park, 1996). The
shadow paging recovery scheme does not require
writing up a log, but it requires a large amount of
main memory space. Woo, Kim, and Lee (1997)

17 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/novel-crash-recovery-scheme-distributed/20763

Related Content

Dimensions of Database Quality
John A. Hoxmeier (2001). Developing Quality Complex Database Systems: Practices, Techniques and

Technologies (pp. 28-47).

www.irma-international.org/chapter/dimensions-database-quality/8270

Meronymic Relationships
Veda C. Storey (1991). Journal of Database Administration (pp. 22-36).

www.irma-international.org/article/meronymic-relationships/51092

Delivering the Whole Product: Business Model Impacts and Agility Challenges in a Network of

Open Source Firms
Joseph Feller, Patrick Finneganand Jeremy Hayes (2008). Journal of Database Management (pp. 95-108).

www.irma-international.org/article/delivering-whole-product/3387

On the Use of Object-Role Modeling for Modeling Active Domains
Patrick van Bommel, Stijn Hoppenbrouwers, Erik Properand Theo van der Weide (2007). Research Issues

in Systems Analysis and Design, Databases and Software Development (pp. 123-145).

www.irma-international.org/chapter/use-object-role-modeling-modeling/28435

Modeling Design Patterns for Semi-Automatic Reuse in System Design
Galia Shlezinger, Iris Reinhartz-Bergerand Dov Dori (2012). Cross-Disciplinary Models and Applications of

Database Management: Advancing Approaches (pp. 29-56).

www.irma-international.org/chapter/modeling-design-patterns-semi-automatic/63661

http://www.igi-global.com/chapter/novel-crash-recovery-scheme-distributed/20763
http://www.irma-international.org/chapter/dimensions-database-quality/8270
http://www.irma-international.org/article/meronymic-relationships/51092
http://www.irma-international.org/article/delivering-whole-product/3387
http://www.irma-international.org/chapter/use-object-role-modeling-modeling/28435
http://www.irma-international.org/chapter/modeling-design-patterns-semi-automatic/63661

