
 837

Chapter LXXXVIII
Enterprise Application

Integration (EAI)
Christoph Bussler

Merced Systems, Inc.

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Enterprise Application
Integration (EAI) TECHNOLOGY

As long as businesses only have one enterprise
application or back end application system there
is no need to share data with any other system in
the company. All data that has to be managed is
contained within one back end application system
and its database. However, as businesses grow,
more back end application systems find their way
into their information technology infrastructure
managing different specialized business data,
mainly introduced due to the growth. These back

end application systems are not independent of
each other; in general they contain similar or
overlapping business data or are part of business
processes. Keeping the data in the various applica-
tion systems consistent with each other requires
their integration so that data can be exchanged or
synchronized. The technology that supports the
integration of various application systems and
their databases is called Enterprise Application
Integration (EAI) technology. EAI technology is
able to connect to back end application systems
in order to retrieve and to insert data. Once con-
nected, EAI technology supports the definition

838

Enterprise Application Integration (EAI)

of how extracted data is propagated to back end
application systems solving the general integra-
tion problem.

BACKGROUND

Typical examples of back end application sys-
tems that are deployed as part of a company’s
information technology (IT) infrastructure are an
Enterprise Resource Planning (ERP) system or a
Manufacturing Resource Planning (MRP) system.
In the general case, different back end application
systems store potentially different data about the
same objects like customers or machine parts. For
example, a part might be described in an ERP
system as well as in a MRP system. The reason
for the part being described in two different back
end application systems is that different aspects
of the same part are described and managed. In
fact, this means that the not necessarily equal
representation of the object exists twice, once in
every system. If there are more than two systems,
then it might be very well the case that the same
object is represented several times. Any changes
to the object have to be applied to the representa-
tion of the object in all systems that contain the
object. And, since this distributed update cannot
happen simultaneously (in the general case), dur-
ing the period of applying the change the same
object will be represented differently until the
changes have been applied to all representations
in all back end application systems. It therefore
can very well be the case that during an address
update of a customer object the customer has two
addresses. Some objects representing the customer
have already the new address while others still
have the old address. This situation exists until
the distributed update is complete. Furthermore,
in most cases there is no record of how many
systems represent the same object. It might be
the case and actually often it is the case that a
change is not applied to all objects because it is

not known which back end application system has
a representation of the object in the first place.
Only over time these cases will be detected and
rectified, mainly through the resolution of error
situations.

In summary, the same object can be represented
in different back end application systems, the
updates to an object can cause delays and inconsis-
tencies, and locations of object representations can
be unknown due to missing object registries.

A second use case is that precisely the same
object is replicated in different back end applica-
tion systems. In this case the update of the object
in one system has to be applied to all the other
systems that store the same object. The objects are
replica of each other since all have to be updated in
the same way so their content is exactly the same.
Only when all the objects are updated they are
consistent again and the overall status across the
back end application systems is consistent again.
In the replicated case it must not be possible that
the same object exposes different properties like
in the address example above.

A third use case is that applications participate
in common business processes. For example, first
a part is being purchased through the ERP system
and upon delivery it is entered and marked as
available in the MRP system. The business process
behind this is consisting of several steps, namely
purchase a part, receive the part, make the part
available, and so on. In this case the back end
application systems do not share common data,
but their data state depends on the progress of a
business process and it has to update the back
end application systems accordingly. The data
will change their state according to the progress
of the business process. In this sense they share
a common business process, each managing the
data involved in it.

All these three use cases, while looking quite
different from each other, have to be implemented
by companies in order to keep their business
data consistent. EAI technology (Bussler 2003)

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/enterprise-application-integration-eai/20769

Related Content

Externalisation and Adaptation of Mult-Agent System Behavior
Liang Xiaoand Des Greer (2006). Advanced Topics in Database Research, Volume 5 (pp. 148-169).

www.irma-international.org/chapter/externalisation-adaptation-mult-agent-system/4391

Deriving Spatial Integrity Constraints from Geographic Application Schemas
Clodoveu A. Davis Jr., Karla A.V. Borgesand Alberto H.F. Laender (2005). Encyclopedia of Database

Technologies and Applications (pp. 176-183).

www.irma-international.org/chapter/deriving-spatial-integrity-constraints-geographic/11142

Evaluating XML-Extended OLAP Queries Based on Physical Algebra
Xuepeng Yinand Torben Bach Pedersen (2006). Journal of Database Management (pp. 85-116).

www.irma-international.org/article/evaluating-xml-extended-olap-queries/3354

UB2SQL: A Tool for Building Database Applications Using UML and B Formal Method
Amel Mammarand Régine Laleau (2006). Journal of Database Management (pp. 70-89).

www.irma-international.org/article/ub2sql-tool-building-database-applications/3363

A Formal Verification and Approach for Real-Time Databases
Pedro Fernandes Ribeiro Neto, Maria Lígia Barbosa Perkusich, Hyggo Oliveira De Almeidaand Angelo

Perkusich (2009). Selected Readings on Database Technologies and Applications (pp. 268-295).

www.irma-international.org/chapter/formal-verification-approach-real-time/28557

http://www.igi-global.com/chapter/enterprise-application-integration-eai/20769
http://www.irma-international.org/chapter/externalisation-adaptation-mult-agent-system/4391
http://www.irma-international.org/chapter/deriving-spatial-integrity-constraints-geographic/11142
http://www.irma-international.org/article/evaluating-xml-extended-olap-queries/3354
http://www.irma-international.org/article/ub2sql-tool-building-database-applications/3363
http://www.irma-international.org/chapter/formal-verification-approach-real-time/28557

