
880

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Most Web developers underestimate the risk and
the level of damage that might be caused when
Web applications are vulnerable to SQL (structured
query language) injections. Unfortunately, Web
applications with such vulnerability constitute a
large part of today’s Web application landscape.
This article aims at highlighting the risk of SQL
injection attacks and provides an efficient solu-
tion.

BACKGROUND

Attackers usually make use of SQL injection
attacks in order to compromise both the confi-
dentiality and integrity of RDBMS- (relational
database management system) powered Web ap-
plications. In some cases, even their availability
is compromised (Cerrudo, 2002).

In his “Introduction to SQL Injection Attacks
for Oracle Developers,” Stephen Kost (2004)
says,

application audits have found many web appli-
cations vulnerable to SQL injection even though
well established coding standards were in place
during development of many of these applica-
tions. Function-based SQL injection attacks are
of most concern since these attacks do not require
knowledge of the application and can be easily
automated.

Fortunately, developers can use simple and
easy-to-implement techniques to defend against
SQL injection attacks. There is no need for a
special tool or to introduce dedicated hardware;
simple coding practices can do the job.

Chapter XCIII
Bind but Dynamic Technique:

The Ultimate Protection Against
SQL Injections

Ahmad Hammoud
Lebanese American University, Lebanon

Ramzi A. Haraty
Lebanese American University, Lebanon

 881

Bind but Dynamic Technique

MAIN THRUST: SQL INJECTIONS

To tackle the problem immediately, an example
will be given so that the concept of SQL injection
is clear before solutions are explored. Consider
the following code.

SQL = “Select * from UsersTbl WHERE Usr
=”
SQL = SQL + SuppliedUsr
SQL = SQL + “And Pwd = ”
SQL = SQL + SuppliedPwd
Execute SQL

The above code is a typical SQL statement that
will be executed whenever a user is trying to log
in. This is the code that exists behind the log-in
button on the log-in page. Obviously, the SQL
statement attempts to find a record in the table
called UsersTbl so that the two fields user and
password are equal to the ones supplied by the
user. If the Execute statement returned rows, then
this means the supplied user name and password
are correct and the user will be allowed to proceed
because he or she is authenticated. The following
two scenarios may occur.

Normal User Scenario

Suppose the supplied user name and password
is as follows.

•	 SuppliedUsr	 : 123
•	 SuppliedPwd	 : 456

Then, the SQL statement that will be executed
is as follows:

Select * from UsersTbl WHERE Usr = 123 And Pwd
= 456

If there is such a record in the UsersTbl table,
then the EXECUTE statement returns a record
and, as a result, the user will be able to proceed.
If no such record exists, the EXECUTE statement
returns zero records. Consequently, the user will
be asked to try again.

Hacker Scenario

Suppose the supplied user name and passwords
are as follows.

•	 SuppliedUsr 	 : 123 --
•	 SuppliedPwd 	 : whatever

Then, the SQL statement that will be executed
follows.

Select * from UsersTbl WHERE Usr = 123 -- And
Pwd = whatever

That way, a hacker can deceive the code and
bypass the authentication because the above
SQL statement will always return the record of
the user 123. This is due to the fact that the two
consecutive dashes are used in SQL to comment
a line so the DBMS will ignore everything after
them. Therefore, the password part of the WHERE
clause is ignored and the hacker will be able to
log in as if he or she is the user 123. Quite trivial
yet a catastrophic trick!

Categories of SQL Injection Attacks

SQL Injection attacks against databases can be
categorized as follows (Kost, 2004).

SQL Manipulation

This occurs when the SQL statement is modified
through the use of SET operations or when the
WHERE clause is exploited to let the SQL state-
ment return a different set of rows. Modifying
the WHERE clause of the user authentication
statement is among the most well-known attacks.
Using several tricks and techniques, hackers will
deceive the code so that the WHERE clause will
always result in true (Overstreet, 2003).

As an example, consider the following piece
of code.

Declare @SQL nvarchar(100)
Declare @SingleQuote char(1)

9 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/bind-dynamic-technique/20774

Related Content

Understanding the Role of Use Cases in UML: A Review and Research Agenda
Brian Dobingand Jeffrey Parsons (2000). Journal of Database Management (pp. 28-36).

www.irma-international.org/article/understanding-role-use-cases-uml/3256

Database Engineering Focusing on Modern Dynamism Crises
Luiz Camolesi Jr.and Marina Teresa Pires Vieira (2005). Encyclopedia of Database Technologies and

Applications (pp. 140-146).

www.irma-international.org/chapter/database-engineering-focusing-modern-dynamism/11136

A Case Study Evaluation of the Use of the Viable System Model in Information Systems

Development
P. Kawalekand D.G. Wastell (1999). Journal of Database Management (pp. 24-32).

www.irma-international.org/article/case-study-evaluation-use-viable/51224

Aspects of Intelligence in an "SP" Database System
J. Gerard Wolff (2009). Database Technologies: Concepts, Methodologies, Tools, and Applications (pp.

725-754).

www.irma-international.org/chapter/aspects-intelligence-database-system/7940

Bounded Cardinality and Symmetric Relationships
Norman Pendegraft (2009). Handbook of Research on Innovations in Database Technologies and

Applications: Current and Future Trends (pp. 12-17).

www.irma-international.org/chapter/bounded-cardinality-symmetric-relationships/20683

http://www.igi-global.com/chapter/bind-dynamic-technique/20774
http://www.irma-international.org/article/understanding-role-use-cases-uml/3256
http://www.irma-international.org/chapter/database-engineering-focusing-modern-dynamism/11136
http://www.irma-international.org/article/case-study-evaluation-use-viable/51224
http://www.irma-international.org/chapter/aspects-intelligence-database-system/7940
http://www.irma-international.org/chapter/bounded-cardinality-symmetric-relationships/20683

