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ABSTRACT

This chapter provides a brief introduction of the use of evolutionary algorithms in the solution
of multi-objective optimization problems (an area now called “evolutionary multi-objective
optimization”). Besides providing some basic concepts and a brief description of the
approaches that are more commonly used nowadays, the chapter also provides some of the
current and future research trends in the area. In the final part of the chapter, we provide a
short description of the sort of applications that multi-objective evolutionary algorithms have
found in finance, identifying some possible paths for future research.

INTRODUCTION

Many real-world problems have two or more
objective functions that we aim to minimize.
Such problems are called multi-objective opti-
mization problems and require an alternative
definition of “optimality.” The most common
notion of optimality normally adopted is the so-
called Pareto optimality, which indicates that
the best possible solutions are those represent-
ing the best trade-offs among the objective
functions. In other words, the desirable solu-
tions are those in which one objective cannot be
improved without worsening another objective.

Evolutionary algorithms (EAs) are tech-
niques based on the emulation of the mecha-
nism of natural selection, which have been
successfully used to solve problems during
several years (Fogel, 1999; Goldberg, 1989).
One of the problem domains in which EAs have
been found to be particularly useful is in multi-
objective optimization (Coello Coello, Van
Veldhuizen, & Lamont, 2002). EAs are particu-
larly suitable for solving multi-objective optimi-
zation problems because they deal simulta-
neously with a set of possible solutions (the so-
called population) which allows us to find sev-
eral members of the Pareto optimal set (i.e., the
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