
  141

Chapter XII
An Agile Perspective on Open 
Source Software Engineering

Sofi ane Sahraoui
American University of Sharjah, UAE

Noor Al-Nahas
American University of Sharjah, UAE

Rania Suleiman
American University of Sharjah, UAE

ABSTRACT

Open source software (OSS) development has been a trend parallel to that of agile software development, 
which is the highly iterative development model following conventional software engineering principles. 
Striking similarities exist between the two development processes as they seem to follow the same ge-
neric phases of software development. Both modes of development have less emphasis on planning and 
design and a more prominent role for implementation during the software engineering process. This 
chapter expounds on this connection by adopting an agile perspective on OSS development to emphasize 
the similarities and dissimilarities between the two models. An attempt is fi rst made to show how OSS 
development fi ts into the generic agile development framework. Then, the chapter demonstrates how the 
development process of Mozilla and Apache as two of the most famous OSS projects can be recast within 
this framework. The similarity discussed and illustrated between agile and OSS development modes is 
rather limited to the mechanics of the development processes and do not include the philosophies and 
motivations behind development.

INTRODUCTION

As conventional software development meth-
odologies struggle to produce software within 
budget limits and set deadlines, and that fully 
satisfi es user requirements, alternative develop-

ment models are being considered as potentially 
more effective. One such model comes under 
the general umbrella of  agile software develop-
ment, which prescribes a highly iterative and 
adaptive development process that adapts not 
only to the changing software requirements and 

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.



142  

An Agile Perspective on Open Source Software Engineering

operating environments, but also to the “collec-
tive experience and skills” of people working in 
the development teams (Turk, France, & Rumpe, 
2005). Proponents of agile methods advocate the 
superiority of their model in delivering quality 
software, produced at an economic cost within 
a fast development period and meeting evolving 
customer requirements. 

A parallel trend to agile software development 
has been that of open source software (OSS) 
development, which looks a priori as a random 
and chaotic process harnessing the abundance of 
programmers on the Internet to produce software 
that is deemed of very high quality. However, upon 
a closer look at both processes, agile and open 
source, striking similarities exist in terms of the 
development process itself.  Indeed some research 
has already pointed out that OSS development, 
although driven by different motivations and eco-
nomic considerations than agile methods, follows 
the same generic phases of agile methodologies 
(Warsta & Abrahamsson, 2003). In this chapter, 
we expound on this connection by adopting an 
agile perspective on OSS development. This is 
not to confuse the two paradigms, which remain 
distinct, but to emphasize the similarities and 
dissimilarities between the two approaches to 
software engineering.

In the fi rst part of the chapter, we attempt to 
retrofi t OSS development within a generic agile 
software development framework. In the second 
part, we demonstrate through the example of two 
landmark open source projects, Mozilla and Apache, 
how OSS development processes can be recast 
within the generic agile development model. 

BACKGROUND

An Agile Perspective 
on OSS Development

Agile development implies developing simple de-
signs and starting the coding process immediately. 

Frequent stops are made to assess the coding process 
and gather any new set of features or capabilities 
from clients in view of incorporating them into the 
software through iterations rather than following a 
single formal requirements document (Lindquist, 
2005). Some of the most prominent agile software 
development methods are  extreme programming 
( XP), Scrum,  feature-driven development ( FDD), 
and adaptive systems development (ASD; Ambler, 
2002). Through plotting these agile software de-
velopment methods into a generic framework for 
software development (see Table 1), we identifi ed 
four common phases to all agile processes, which 
we termed the generic agile development model (see 
Figure 1). These phases are outlined as follows: 

1.  Problem exploration: Includes overall 
planning, requirements determination, and 
scheduling

2.  Iterative development: Repeated cycles 
of simple design, coding, testing, a small 
release, and refi ning requirements

3.  Version control: At the end of one iteration 
or a few concurrent or consecutive iterations, 
changes are committed to the fi nal program 
and documented, probably delivering a 
working version to the customer (possibly in-
stalled for use until development ceases).

4.   Final release: When changes can no longer 
be introduced to the requirements or operat-
ing conditions 

 
 Open Source Development 
from an Agile Perspective

In general, the fundamental difference between 
open source and conventional software devel-
opment is that the extremely emphasized and 
revisited steps of planning, analysis, and design 
in software engineering are not part of the general 
open source life cycle; the “initial project founder” 
is the one who conducts these steps in a brief and 
oversimplifi ed manner (O’Gara, 2002). 



 

 

11 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/agile-perspective-open-source-software/21185

Related Content

Studies of Project Tasks
 (2018). Free and Open Source Software in Modern Data Science and Business Intelligence: Emerging

Research and Opportunities  (pp. 81-92).

www.irma-international.org/chapter/studies-of-project-tasks/193458

FLOSS Legal and Engineering Terms and a License Taxonomy
Darren Skidmore (2007). Handbook of Research on Open Source Software: Technological, Economic, and

Social Perspectives  (pp. 394-410).

www.irma-international.org/chapter/floss-legal-engineering-terms-license/21204

On the Role of Public Policies Supporting Free/Open Source Software
Stefano Cominoand Fabio M. Manenti (2007). Handbook of Research on Open Source Software:

Technological, Economic, and Social Perspectives  (pp. 412-427).

www.irma-international.org/chapter/role-public-policies-supporting-free/21205

SBHDetector: A Fuzzy-Based Hybrid Approach to Detect Renaming and Shifting Between

Versions
Ritu Gargand Rakesh Kumar Singh (2022). International Journal of Open Source Software and Processes

(pp. 1-18).

www.irma-international.org/article/sbhdetector/300752

Teaching a YouTube™ Course Online
Chareen Snelson (2015). Open Source Technology: Concepts, Methodologies, Tools, and Applications

(pp. 364-380).

www.irma-international.org/chapter/teaching-a-youtube-course-online/120925

http://www.igi-global.com/chapter/agile-perspective-open-source-software/21185
http://www.irma-international.org/chapter/studies-of-project-tasks/193458
http://www.irma-international.org/chapter/floss-legal-engineering-terms-license/21204
http://www.irma-international.org/chapter/role-public-policies-supporting-free/21205
http://www.irma-international.org/article/sbhdetector/300752
http://www.irma-international.org/chapter/teaching-a-youtube-course-online/120925

