
282  

Chapter XXII
Motives and Methods for 

Quantitative  FLOSS Research
Megan Conklin

Elon University, USA

INTRODUCTION

Numbers, statistics, and quantitative measures 
underpin most studies of  free/libre open source 
(FLOSS) software development. Studies of 
FLOSS development usually require the research-
ers to have answered questions like: How many 
FLOSS projects are there? How many developers? 
How many users? Which projects are dead, which 
are fl ourishing? What languages are popular for 
development? How large are development teams, 
and how are these teams structured? 

These questions are fun to answer in the context 
of FLOSS development because project teams are 
self-organized, widely-distributed geographically, 
and use many different programming languages 

ABSTRACT

This chapter explores the motivations and methods for mining (collecting, aggregating, distributing, 
and analyzing) data about free/libre open source software (FLOSS) projects. It fi rst explores why there 
is a need for this type of data. Then the chapter outlines the current state-of-the art in collecting and 
using quantitative data about FLOSS project, focusing especially on the three main types of FLOSS 
data that have been gathered to date: data from large forges, data from small project sets, and survey 
data. Finally, the chapter will describe some possible areas for improvement and recommendations for 
the future of FLOSS data collection.

and software development methodologies. Teams 
are organized in an ad hoc, decentralized fashion. 
Projects can be very hard to track, and changes 
can be diffi cult to follow. Developers primarily 
use the Internet for communication, and teams 
are organized around the idea that anyone can 
contribute. Since the organization of the teams is 
done via the Internet and since the source code is 
open for anyone to view, it may seem as though 
data about these projects is as open as the projects 
themselves.

This is in direct contrast to the way proprietary 
projects are most often structured, and conse-
quently, data about proprietary projects are col-
lected and analyzed in a different way. Empirical 
 software engineering researchers have, in the past, 

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.



  283

Motives and Methods for Quantitative FLOSS Research

typically used metrics from a single company or 
a single proprietary project. This data was col-
lected systematically and distributed in a tightly 
controlled manner, consistent with the proprietary 
nature of the software being developed. Whereas 
 data analysis about  proprietary software practices 
was primarily a problem of scarcity (getting ac-
cess and permissions to use the data), collecting 
and analyzing FLOSS data becomes a problem 
of abundance and reliability (storage, sharing, 
aggregation, and fi ltering of the data). 

Thus, this chapter will explore the motivations 
and methods surrounding the mining of FLOSS 
data, specifi cally how and why the collection, 
aggregation, distribution, and analysis of this 
data takes place. We will fi rst discuss motives: 
why does software engineering research rely on 
metrics at all, and why do we need FLOSS metrics 
in particular? We will then study methods: what 
is the current state-of-the-art in FLOSS  data min-
ing? Finally, we note some possible future trends, 
and propose some general recommendations for 
measuring FLOSS projects quantitatively.

BACKGROUND

Importance of Metrics to 
Software Engineering

The collection and aggregation of real-world and 
historical data points are critical to the task of 
measurement in software engineering. Quantita-
tive and empirical approaches to software engi-
neering require real-world data; for example, the 
branch of software engineering concerned with 
estimation will use empirical or historical data to 
seed the estimate calculation. More generally, the 
four reasons for measuring software creation pro-
cesses are commonly listed as a characterization, 
evaluation, prediction, or improvement on these 
processes (Park, Goethert, & Florac, 1996). All 
of these goals require useful data (measurements) 
in order to be carried out effectively. Interest-

ing measures of the software process can vary 
depending on the goals of the research, but they 
could include things like the number of errors in 
a particular module, the number of developers 
working in a particular language or development 
environment, or the length of time spent fi xing a 
particular code defect (Yourdon, 1993). The col-
lection domain of a research project will differ 
as well; measures can be collected for a group of 
products, a group of developers, a single software 
product, a single release of a software project, or 
even for a single developer.

The empirical software engineering literature 
is replete with examples of how gathering metrics 
about projects can lead to important insights. 
Software engineering metrics can be used to avoid 
costly disasters, effi ciently allocate human and 
fi nancial capital, and to understand and improve 
business processes. One famous example of a 
software error that caused signifi cant fi nancial and 
property damage was the European Ariane 5 fl ight 
501 disaster of 1996 (Jezequel & Meyer, 1997). 
The European rocket crashed 40 seconds after 
liftoff, reportedly due to an error in the way soft-
ware components were reused within the system. 
This was a US$500 million software engineering 
error. In 1975, Fred Brooks made famous another 
software engineering debacle: the management 
of the IBM OS/360 project (Brooks, 1975). His 
conclusions about the ineffi ciencies in the way 
programmers were added to the development team 
became known as Brooks’ Law, and this remains 
one of the tenets of software engineering practice 
to this day. Using metrics about team composi-
tion, communication, and productivity, Brooks 
concluded that work done by a set of programmers 
will increase linearly as programmers are added 
to a project, but communication and coordination 
costs will rise exponentially. Brooks’ Law is most 
often remembered as: “adding manpower to a late 
project makes it later.” 

There are hundreds of these examples in the 
software engineering literature about metrics in 
proprietary projects, but where are the metrics 



 

 

10 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/motives-methods-quantitative-floss-

research/21195

Related Content

Challenges and Trends in Home Automation: Addressing the Interoperability Problem With the

Open-Source Platform OpenHAB
Cristina Portalés, Sergio Casasand Kai Kreuzer (2021). Research Anthology on Usage and Development

of Open Source Software (pp. 539-565).

www.irma-international.org/chapter/challenges-and-trends-in-home-automation/286593

Research of Software Reliability Test Based on Test Model
LI Hong-Hui, Zhao Ai-Huaand Zhang Jun-Wen (2017). International Journal of Open Source Software and

Processes (pp. 49-64).

www.irma-international.org/article/research-of-software-reliability-test-based-on-test-model/201057

Open Government Success Factors in Government Websites: The Mexican Experience
Rodrigo Sandoval-Almazán (2015). Open Source Technology: Concepts, Methodologies, Tools, and

Applications  (pp. 1619-1635).

www.irma-international.org/chapter/open-government-success-factors-in-government-websites/120991

Locating Faulty Source Code Files to Fix Bug Reports
Abeer Hamdyand Abdelrahman E. Arabi (2022). International Journal of Open Source Software and

Processes (pp. 1-15).

www.irma-international.org/article/locating-faulty-source-code-files-to-fix-bug-reports/308791

Motivation of Open Source Developers: Do License Type and Status Hierarchy Matter?
Mark R. Allynand Ram B. Misra (2011). Multi-Disciplinary Advancement in Open Source Software and

Processes (pp. 233-249).

www.irma-international.org/chapter/motivation-open-source-developers/52254

http://www.igi-global.com/chapter/motives-methods-quantitative-floss-research/21195
http://www.igi-global.com/chapter/motives-methods-quantitative-floss-research/21195
http://www.irma-international.org/chapter/challenges-and-trends-in-home-automation/286593
http://www.irma-international.org/article/research-of-software-reliability-test-based-on-test-model/201057
http://www.irma-international.org/chapter/open-government-success-factors-in-government-websites/120991
http://www.irma-international.org/article/locating-faulty-source-code-files-to-fix-bug-reports/308791
http://www.irma-international.org/chapter/motivation-open-source-developers/52254

