
328

Chapter XXV
Legal and Economic

Justifi cation for
 Software Protection

Bruno de Vuyst
Vrije Universiteit Brussel, Belgium

Alea Fairchild
Vrije Universiteit Brussel, Belgium

ABSTRACT

This chapter discusses legal and economic rationale in regards to open source software protection.
Software programs are, under TRIPS1, protected by copyright (reference is made to the Berne Conven-
tion2). The issue with this protection is that, due to the dichotomy idea/expression that is typical for
copyright protection, reverse engineering of software is not excluded, and copyright is hence found to
be an insuffi cient protection. Hence, in the U.S., software makers have increasingly turned to patent
protection. In Europe, there is an exclusion of computer programs in Article 52 (2) c) EPC (EPO, 1973),
but this exclusion is increasingly narrowed and some call for abandoning the exclusion altogether. A
proposal by the European Commission, made in 2002, called for a directive to allow national patent
authorities to patent software in a broader way, so as to ensure further against reverse engineering;
this proposal, however, was shelved in 2005 over active opposition within and outside the European
parliament. In summary, open source software does not fi t in any proprietary model; rather, it creates a
freedom to operate. Ultimately, there is a need to rethink approaches to property law so as to allow for
viable software packaging in both models.

INTRODUCTION

 Copyright Protection of Software

A software program is foremost a sequence of
orders and mathematical algorithms emerging

from the mind of the innovator, hence creating
a link with copyright law as a prime source of
intellectual property protection.

According to Article 10 TRIPS, computer
programs, whether in source or object code, shall
be protected as literary works under the Berne

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 329

Legal and Economic Justifi cation for Software Protection

Convention provided that they are (1) original and
(2) tangible. In light of Article 9 TRIPS, which
states that copyright protection shall extend to
expressions, but not to ideas, procedures, methods
of operation or mathematical concepts as such,
copyright protects the actual code of the computer
program itself, and the way the instructions have
been drawn up, but not the underlying idea thereof
(Overdijk, 1999).

Hence, an author can protect his original work
against unauthorized copying. Consequently,
an independent creation from another person
would not automatically be seen as a copyright
infringement (Kirsch, 2000a; Leijnse, 2003).
With respect to software programs this could
have as consequence that a person disassembles
and decompiles an existing software program to
determine the underlying idea and uses this idea
to build his own program (reverse engineering).
As he only uses the idea, which is not copyright-
able, no infringement will result.

BACKGROUND

 Patent Law Protection of Software

Software is a novel form in the technology world,
and may make a claim to patent protection from
that angle. The conditions to be met to enjoy patent
protection are more stringent than those to enjoy
copyright protection. In Europe3, for example, an
invention will enjoy protection from patent law
provided that the invention (1) is new (i.e., never
been produced before), (2) is based on inventor
activity (i.e., not have been before part of prior
art), and (3) makes a technical contribution (i.e.,
contribute to the state of the art). In the U.S., the
patent requirements to be met are (1) novelty,
(2) non-obviousness, and (3) the innovations
must fall within the statutory class of patentable
inventions.

Pursuant to patent law, a patent holder can
invoke the protection of his patent to exclude

others from making, using or selling the patented
invention. As opposed to copyright protection, the
inventor’s patent is protected regardless whether
the software code of the patented program was
copied or not.

The Evolution of the Legal
Protection of Software

Prior to the 1980s, U.S. courts unanimously
held that software was not patentable and that
its only protection could be found in copyright.
Indeed, the U.S. Supreme Court ruled in two
landmark decisions, Gottschalk vs. Benson (1972)
and Parker vs. Flook (1978), that software was
similar to mathematics and laws of nature (both
excluded from being patented) and, therefore,
was unpatentable.

In Diamond vs. Diehr (1981), however, the
court reversed course, deciding that an invention
was not necessarily unpatentable simply because
it utilized software. Since this decision, U.S.
courts as well as the US Patent Offi ce gradually
broadened the scope of protection available for
software-related inventions (Kirsch, 2000). The
situation evolved to the current status in which it
is expected to obtain a patent for software-related
inventions. Since the State Street Bank and Trust
Co. vs. Signature Financial Group Inc. (1996)
case even mathematical algorithms and business
methods have been found to be patentable (see
also the Amazon One-click case IPXL Holding,
plc vs. Amazon.com, Inc., 2005; Bakels , 2003).
As from this decision, the U.S. focus, for patent-
ability, is “utility based,” which is defi ned as “the
essential characteristics of the subject matter”
and the key to patentability is the production of
a “useful, concrete and tangible result” (Hart,
Holmes, & Reid, 1999). The evolution resulted in
a rush of patent applications for software-related
inventions and business methodologies.

Contrary to the U.S., Europe has been unwill-
ing to grant patents for ideas, business processes
and software programs. The most important rea-

10 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/legal-economic-justifi-cation-software/21198

Related Content

On the State of Free and Open Source E-Learning 2.0 Software
Utku Kose (2014). International Journal of Open Source Software and Processes (pp. 55-75).

www.irma-international.org/article/on-the-state-of-free-and-open-source-e-learning-20-software/124004

Hacker Culture and the FLOSS Innovation
Yu-Wei Lin (2012). International Journal of Open Source Software and Processes (pp. 26-37).

www.irma-international.org/article/hacker-culture-and-the-floss-innovation/101204

Optimization Driven Constraints Handling in Combinatorial Interaction Testing
Ram Goudaand Chandraprakash V. (2019). International Journal of Open Source Software and Processes

(pp. 19-37).

www.irma-international.org/article/optimization-driven-constraints-handling-in-combinatorial-interaction-testing/238008

Critical Analysis on Open Source LMSs Using FCA
K. Sumangaliand Ch. Aswani Kumar (2015). Open Source Technology: Concepts, Methodologies, Tools,

and Applications (pp. 1111-1125).

www.irma-international.org/chapter/critical-analysis-on-open-source-lmss-using-fca/120961

Open Source Assessment Methodologies
Barbara Russo, Marco Scotto, Alberto Sillittiand Giancarlo Succi (2010). Agile Technologies in Open

Source Development (pp. 302-310).

www.irma-international.org/chapter/open-source-assessment-methodologies/36509

http://www.igi-global.com/chapter/legal-economic-justifi-cation-software/21198
http://www.irma-international.org/article/on-the-state-of-free-and-open-source-e-learning-20-software/124004
http://www.irma-international.org/article/hacker-culture-and-the-floss-innovation/101204
http://www.irma-international.org/article/optimization-driven-constraints-handling-in-combinatorial-interaction-testing/238008
http://www.irma-international.org/chapter/critical-analysis-on-open-source-lmss-using-fca/120961
http://www.irma-international.org/chapter/open-source-assessment-methodologies/36509

