Chapter 84 Viterbi Decoder in Hardware

Mário Pereira Véstias Instituto Politecnico de Lisboa, Portugal

ABSTRACT

Trellis decoding is used to recover encoded information that was corrupted during transmission over a noisy channel. The Viterbi algorithm is the most well-known trellis-based maximum likelihood decoding algorithm. The Viterbi algorithm is executed by a Viterbi decoder. Different hardware solutions may be considered to implement a Viterbi decoder with different design requirements in terms of area, performance, power consumption, among others. The most appropriate solution depends on the metric requirements of the application as well as on the target technology. Properties of the Viterbi algorithm are used to design parallel Viterbi decoder. In particular, statistical properties of the Viterbi algorithm are used to design parallel Viterbi decoder with very high data decoding rates. The chapter focuses on the implementation of a Viterbi decoder in hardware, including optimizations to improve the area and performance.

INTRODUCTION

Trellis decoding is used to recover encoded information that was corrupted during transmission over a noisy channel. The Viterbi algorithm is the most well known trellis-based maximum likelihood decoding algorithm. The Viterbi algorithm is executed by a Viterbi decoder. Different hardware solutions may be considered to implement a Viterbi decoder with different design requirements in terms of area, performance, power consumption, among others. The most appropriate solution depends on the metric requirements of the application as well as on the target technology.

Properties of the Viterbi algorithm are used to simplify and improve the architecture of the Viterbi decoder. In particular, statistical properties of the Viterbi algorithm are used to design parallel Viterbi decoders with very high data decoding rates.

The article focuses on the implementation of a Viterbi decoder in hardware, including optimizations to improve the area and performance.

DOI: 10.4018/978-1-5225-7598-6.ch084

BACKGROUND

Generically, a communication system includes a channel encoder at the transmitter and a channel decoder at the receiver. Encoding the bit stream to be transmitted reduces the energy per data bit needed to achieve the same bit error rate (BER) over a noisy channel compared to a non-coded transmission. A better channel code needs lower energy to obtain a particular BER.

Convolutional Encoder

Two major classes of binary codes are block codes and convolution codes. In this article we are only concerned with convolution codes (P. Elias, 1955). Convolution codes operate over a continuous bit stream. A convolutional encoder is used to generate the encoded bitstream. A typical implementation consists on a shift register and a set of modulo-2 addition. The content of the shift register defines the state of the encoder (*s* bits), from which we obtain a finite state machine with $m = 2^s$ states. Figure 1 shows an example of a convolution encoder with rate 1/2 (rate 1/c generates *c* bits for each input bit) and its state machine.

An alternative way to represent the behavior of the encoder was proposed by Forney (G. D. Forney, Jr., 1967) designated *trellis representation*. A trellis is one of the most convenient ways to visualize the behavior of the decoding algorithms (see Figure 2).

Figure 1. Convolution encoder with rate 1/2

Figure 2. Trellis diagram of the encoder in Figure 1

13 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-global.com/chapter/viterbi-decoder-in-hardware/214688

Related Content

A Hybrid Technique Using PCA and Wavelets in Network Traffic Anomaly Detection

Stevan Novakov, Chung-Horng Lung, Ioannis Lambadarisand Nabil Seddigh (2014). *International Journal of Mobile Computing and Multimedia Communications (pp. 17-53).*

www.irma-international.org/article/a-hybrid-technique-using-pca-and-wavelets-in-network-traffic-anomalydetection/113771

Implementation of Mobile Learning at the Open University Malaysia

Chng Loi Peng, Zoraini Wati Abas, Norlia T. Goolamally, Yuzery Yusoffand Harvinder Kaur Dharam Singh (2011). *Mobile Technologies and Handheld Devices for Ubiquitous Learning: Research and Pedagogy (pp. 170-186).*

www.irma-international.org/chapter/implementation-mobile-learning-open-university/46564

LiftingDoneRight: A Privacy-Aware Human Motion Tracking System for Healthcare Professionals

Wenbing Zhao, Roanna Lun, Connor Gordon, Abou-Bakar M. Fofana, Deborah D. Espy, Ann Reinthal, Beth Ekelman, Glenn D. Goodman, Joan E. Niederriter, Chaomin Luoand Xiong Luo (2016). *International Journal of Handheld Computing Research (pp. 1-15).* www.irma-international.org/article/liftingdoneright/175344

Estimate Risks Eate for Android Applications Using Android Permissions

Latifa Er-Rajy, My Ahmed El Kiramand Mohamed El Ghazouani (2021). *International Journal of Mobile Computing and Multimedia Communications (pp. 17-31).*

www.irma-international.org/article/estimate-risks-eate-for-android-applications-using-android-permissions/289162

Imperceptible Simplification on Mobile Displays

Fan Wu, Emmanuel Agu, Clifford Lindsayand Chung-han Chen (2012). *International Journal of Handheld Computing Research (pp. 37-54).*

www.irma-international.org/article/imperceptible-simplification-mobile-displays/64364