
1426

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 105

DOI: 10.4018/978-1-5225-7598-6.ch105

ABSTRACT

Mutation testing is a suitable technique to determine the quality of test suites designed for a certain
program. The set of mutation operators and the overall technique should be developed around each
programming language in particular. The structures related to the object-oriented paradigm require
a tailored analysis addressing them. However, class mutation operators for these languages have not
been analyzed at the same extent as traditional operators for procedural languages in the literature. The
purpose of the chapter is to look in depth at the development and the current state of mutation testing,
and more specifically, with regard to object-oriented programming languages.

INTRODUCTION

Mutation testing is a suitable technique to determine the quality of test suites designed for a certain pro-
gram. This testing technique is based on the creation of mutants, that is, versions of the original program
with an intentionally introduced fault. Mutations are inserted within the code through some defined rules
called mutation operators. The underlying idea is that a good set of test cases for the system under test
(SUT) should be able to detect any changes generated affecting the behavior of the application.

Test cases are supposed to produce the correct output when they are run on the original program. When
the output of a mutant is different from the output of the original program for a test case, the mutation
has been revealed and the mutant is classified as dead. Otherwise, the mutant is still alive and needs to
be executed against the rest of the test cases to detect its modification. Hence, if some mutants remain

Mutation Testing Applied to
Object-Oriented Languages

Pedro Delgado-Pérez
University of Cádiz, Spain

Inmaculada Medina-Bulo
University of Cádiz, Spain

Juan José Domínguez-Jiménez
University of Cádiz, Spain

1427

Mutation Testing Applied to Object-Oriented Languages
﻿

alive after the whole test suite execution, new test cases can be added in order to kill these surviving
mutants. However, we classify a surviving mutant as equivalent when the meaning of the program has
not actually been modified despite the injected mutation.

Mutation operators represent typical mistakes made when programming and they produce a simple
syntactic change in the SUT. Mutation testing is a white-box testing technique, i.e., it tests a program
at the source code level. Therefore, the set of mutation operators and the overall technique should be
developed around each programming language in particular; the correct choice of the set is one of the
keys to successful mutation testing. Thus, we can find an assortment of research studies devoted to the
definition of mutation operators for specific languages and tools automating the generation of mutants.

In the same sense, a set of mutation operators can be defined at different levels in each language.
Mutation operators mainly dealing with variables, operators or constants were designed for some proce-
dural programs in the early years of the technique. However, other mainstream languages as Java, C# or
C++ also include object orientation and completely different mutation operators are needed to test the
new structures in these languages. As an example, the operator IHD (Hiding Variable Deletion) deletes
a variable member in a subclass which is hiding a variable in a parent class:

Original code:
class Base{ class Child: public Base{

public: public:

 … …

 int v; int v;

}; };

Mutated code:
class Base{ class Child: public Base{

public: public:

 … …

 int v; /*IHD*/

}; };

The purpose of the chapter is to look in depth at the development and the current state of mutation
testing, and more specifically, with regard to object-oriented programming languages, in order to widely
make known this technique in the computer science research field. Next sections deal with the related
work, the steps to accomplish in the mutation testing process, the approaches to evaluate mutation op-
erators and the existing techniques to improve the problems of this technique: equivalent mutant detec-
tion, test data generation and the expensive computational cost. Finally, the definition and evaluation of
mutation operators for object-oriented languages will be focused.

BACKGROUND

Mutation testing was originally proposed by Hamlet (1977) and DeMillo, Lipton and Sayward (1978)
and its development has taken place in parallel with the appearance of the different programming lan-
guages (Offutt & Untch, 2001). As a result, in the early years, most of the works centered on procedural
programming languages: Agrawal et al. (1989) defined a set of 77 mutation operators for C, the tool

11 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/mutation-testing-applied-to-object-oriented-

languages/214711

Related Content

Video Sequence Analysis for On-Table Tennis Player Ranking and Analysis
Xiaoni Wei (2022). International Journal of Mobile Computing and Multimedia Communications (pp. 1-9).

www.irma-international.org/article/video-sequence-analysis-for-on-table-tennis-player-ranking-and-analysis/293750

Dynamic Situational Adaptation of a Requirements Engineering Process
Graciela Dora Susana Hadad, Jorge Horacio Doornand Viviana Alejandra Ledesma (2019). Advanced

Methodologies and Technologies in Network Architecture, Mobile Computing, and Data Analytics (pp.

1386-1399).

www.irma-international.org/chapter/dynamic-situational-adaptation-of-a-requirements-engineering-process/214708

Know Your World Better: Cloud Based Augmented Reality Android Application
Srinivasa K. G., Satvik Jagannathand Aakash Nidhi (2016). International Journal of Handheld Computing

Research (pp. 1-15).

www.irma-international.org/article/know-your-world-better/167831

Systems Development Methodology for Mobile Commerce Applications
Muazzan Binsalehand Shahizan Hassan (2013). Contemporary Challenges and Solutions for Mobile and

Multimedia Technologies (pp. 146-162).

www.irma-international.org/chapter/systems-development-methodology-mobile-commerce/70813

Investigating Serendipitous Smartphone Interaction with Public Displays
Matthias Baldaufand Peter Fröhlich (2015). Emerging Perspectives on the Design, Use, and Evaluation of

Mobile and Handheld Devices (pp. 239-268).

www.irma-international.org/chapter/investigating-serendipitous-smartphone-interaction-with-public-displays/133758

http://www.igi-global.com/chapter/mutation-testing-applied-to-object-oriented-languages/214711
http://www.igi-global.com/chapter/mutation-testing-applied-to-object-oriented-languages/214711
http://www.irma-international.org/article/video-sequence-analysis-for-on-table-tennis-player-ranking-and-analysis/293750
http://www.irma-international.org/chapter/dynamic-situational-adaptation-of-a-requirements-engineering-process/214708
http://www.irma-international.org/article/know-your-world-better/167831
http://www.irma-international.org/chapter/systems-development-methodology-mobile-commerce/70813
http://www.irma-international.org/chapter/investigating-serendipitous-smartphone-interaction-with-public-displays/133758

