
1

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

DOI: 10.4018/978-1-5225-7661-7.ch001

ABSTRACT

Information technology is critically dependent on a number of technological and human factors. Software
engineering processes are multi-sided; they include customer and developer parties. Conceptual mis-
understanding by either party often results in the products which do not meet customer’s expectations.
This misconception of the software product scope usually leads to a crisis of software product delivery.
To adequately manage and efficiently respond to this crisis, the authors recommend using software
engineering models, methods, techniques, practices, and tools. Software engineering is a discipline
which started in the 1960s as a response to the so-called “software crisis”; it combines technical and
human-related skills. To manage the crisis, the authors suggest architecture patterns and instantiate
them by implementation examples.

INTRODUCTION

In the 1960s, the so-called “software crisis” triggered the advent of software engineering as a discipline.
This term originated from the critical development complexity, which happened due to the rapid growth
of computational power. At that time, the computing power of the machines became so overwhelming
that a number of software development projects were over budget, late or unsuccessful. One well-known
example was the first General Electric’s payroll system launched in 1954 at Louisville, Kentucky; this was
late, over budget, and missing crucial features (Topi, & Tucker, 2014). Irrespective of human efforts, the
complexity of the hardware and software systems was hard to cope with by means of the old methods and
techniques. The challenge was so dramatic that in 1967 NATO arranged an invitation-only conference,
where world leaders in IT research and practice searched for an efficient response. At the conference,
the term “software crisis” was coined by F.Bauer and used by E.Dijkstra (Naur, & Randell, 1968).

Another term suggested at the conference by the same F. Bauer was software engineering. The idea
was to apply the engineering methods of material production to the new domain of large-scale concurrent

Crisis Response and
Management

Sergey V. Zykov
National Research University Higher School of Economics, Russia

2

Crisis Response and Management
﻿

software systems in order to make the software projects more accurate and predictable. This software
engineering approach was feasible, though the methods and practices used had to differ substantially
from those used in the material production. Specifically, the experts examined bridges as the instances
of complex material systems.

The attendees concluded that the distribution of time and cost by the lifecycle phases, especially for
the post-delivery maintenance was very different for software and material production. This is why the
new software engineering discipline was in need of new methodologies, techniques and tools.

The focus of the software engineering discipline was the “serial” production of substantially large-
scale, complex and high quality software systems. Concerning software complexity, at least two dimen-
sions were identified; these were technical and management complexity (Booch, 2006). To measure
software product complexity and quality, a set of attributes and metrics was suggested. The quality
attributes included performance, reliability, security, fault tolerance, usability, strategic reusability and
maintainability; their importance depended on the product size and scope (Lattanze, 2008). The complex-
ity metrics included product size in terms of lines of code, function points, nesting levels, cyclomatic
complexity and a number of more sophisticated ones (Debbarma, Debbarma, Chakma, & Jamatia, 2013).
These metrics assisted in the divide-and-conquer strategy; later, they this general approach transformed
into elaborate product estimation techniques and software development methodologies (Jensen, 2014).

Researchers argue whether the crisis in software engineering is over yet (Colburn, Hsieh, Kehrt, &
Kimball, 2008) or it still exists (Buettner, Dai, Pongnumkul, & Prasad, 2015). This happens because of
the fundamental differences in the lifecycles of software and material products. One critical difference
between large-scale software and material production is the distribution of time and cost by the devel-
opment lifecycle phases. Therewith, maintenance is the most time and cost consuming, it often exceeds
60% of the software project expenses (Schach, 2011). The other crucial difference is that software
production often depends dramatically upon human factors. These human factors relate to the manage-
ment aspects of software complexity, whereas the technology factors relate to the technological aspects.
Certain product categories are far more complex in terms of management than in terms of technology;
however, the influence of the human factors on their development is largely underestimated. For such
software product categories as enterprise information systems and defense management information
systems, neglecting these human factors often results in project delays or even failures (Booch, 2006).

Therewith, the software crisis originates from a number of factors; these are human-related and
technology-related factors. To manage this crisis, the authors suggest a set of software engineering
methods, which systematically optimize the lifecycles for both types of these influencing factors. This
lifecycle optimization strategy includes crisis-responsive methodologies, system-level architectural pat-
terns, informing process frameworks, and a set of knowledge transfer principles (Zykov, 2009; Zykov,
Shapkin, Kazantsev, & Roslovtsev, 2015; Zykov, 2015).

Software development usually involves customers, developers and their management; each of these
parties has different preferences and expectations. Therewith, these parties often differ in their vision
of the resulting product; typically, the customers focus on business value while the developers are con-
cerned with technological aspects. Such a difference in focus often results in crises. Thus, the software
crises often has a human factor-related root cause. To deal with these kind of crises, software engineers
should enhance their skillset with managerial skills, such as teamwork, communications, negotiations,
and risk management.

10 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/crisis-response-and-management/215844

Related Content

Economics Like a Living: A Bio-Ecological Model for the 21st Century
Torben Larsen (2020). International Journal of Public and Private Perspectives on Healthcare, Culture, and

the Environment (pp. 10-26).

www.irma-international.org/article/economics-like-a-living/243475

Smart Healthcare Monitoring System for War-End Soldiers Using CNN
Preethi S., Prasannadevi V.and Arunadevi B. (2021). Research Anthology on Military and Defense

Applications, Utilization, Education, and Ethics (pp. 166-199).

www.irma-international.org/chapter/smart-healthcare-monitoring-system-for-war-end-soldiers-using-cnn/284315

African Culture and Sustainability: The Case of the Grass Landers of Cameroon
Cornelius W. Wuchuand Akoni Innocent Ngwainbi (2021). International Journal of Public and Private

Perspectives on Healthcare, Culture, and the Environment (pp. 46-59).

www.irma-international.org/article/african-culture-and-sustainability/266293

Military Facility Location Problems: A Brief Survey
Mumtaz Karatas, Ertan Yakcand Nasuh Razi (2021). Research Anthology on Military and Defense

Applications, Utilization, Education, and Ethics (pp. 556-583).

www.irma-international.org/chapter/military-facility-location-problems/284337

Digital Simulation for the Outdoor Thermal Comfort Assessment
Alshimaa Aboelmakarem Farag, Sama Badawiand Rahma M. Doheim (2019). Handbook of Research on

Digital Research Methods and Architectural Tools in Urban Planning and Design (pp. 33-46).

www.irma-international.org/chapter/digital-simulation-for-the-outdoor-thermal-comfort-assessment/230522

http://www.igi-global.com/chapter/crisis-response-and-management/215844
http://www.irma-international.org/article/economics-like-a-living/243475
http://www.irma-international.org/chapter/smart-healthcare-monitoring-system-for-war-end-soldiers-using-cnn/284315
http://www.irma-international.org/article/african-culture-and-sustainability/266293
http://www.irma-international.org/chapter/military-facility-location-problems/284337
http://www.irma-international.org/chapter/digital-simulation-for-the-outdoor-thermal-comfort-assessment/230522

