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Chapter VIl

How Size Matters: The Role
of Sampling in Data Mining

Paul D. Scott
University of Essex, UK

This chapter addresses the question of how to decide how large a sample
is necessary in order to apply a particular data mining procedure to a
given data set. A brief review of the main results of basic sampling theory
is followed by a detailed consideration and comparison of the impact of
simple random sample size on two well-known data mining procedures:
naive Bayes classifiers and decision tree induction. It is shown that both
the learning procedure and the data set have a major impact on the size
of sample required but that the size of the data set itself has little effect.
The next section introduces a more sophisticated form of sampling,
disproportionate stratification, and shows how it may be used to make
much more effective use of limited processing resources. This section also
includes a discussion of dynamic and static sampling. An examination of
the impact of target function complexity concludes that neither target
function complexity nor size of the attribute tuple space need be consid-
ered explicitly in determining sample size. The chapter concludes with a
summary of the major results, a consideration of their relevance for small
data sets and some brief remarks on the role of sampling for other data
mining procedures.

INTRODUCTION

When data mining emerged as a distinct field, it was plausibly claimed that the
total quantity of information stored in databases doubled every 20 months (Frawley,
Piatetsky-Shapiro & Matheus, 1991). The credo of the new discipline was that the
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effort expended on accumulating and storing this prodigious quantity of data should
be regarded as an investment that had created a resource ripe for exploitation.
Machine learning had produced a number of well-proven techniques for automati-
cally discovering regularities and patterns in data sets. The idea of applying these
techniques to find the untapped seams of useful information in these vast deposits
of data was the starting point of the new discipline. In the subsequent decade, size
appears to have undergone a seismic shift in status: very large databases are now
regarded as problematic because it may not be possible to process them efficiently
using standard machine learning procedures. The problem is particularly acute
when the data is too large to fit into main memory.

There are three basic approaches to dealing with this problem: first, develop
new algorithms with more modest space/time requirements; second, use existing
algorithms but implement them on parallel hardware (see Freitas & Lavington, 1998
for review); and third, apply the learning procedures to an appropriate sample drawn
from the data set.

Machine learning practitioners appear uncomfortable with-the idea of sam-
pling; for them, it is what John and Langley (1996) describe as “a scary prospect”.
Why this should be is something of a puzzle, since sampling theory is a long-
established area of study. Standard introductory texts on statistics (e.g. Wonnacott
& Wonnacott, 1990) typically include a treatment of those basic aspects of the
subject that bear directly on hypothesis testing; Mitchell (1997) covers similar
material in a machine learning context. Sampling itself is usually treated in separate
texts: Kalton (1983) provides a concise introduction, while Kish (1965) provides a
more comprehensive and mathematically grounded coverage.

In this chapter | shall be concerned with one central question: how do you
decide how large a sample you need in order to apply a particular data mining
procedure to a given data set. In the next section | discuss why sampling is
unavoidable and review the main results of basic sampling theory. The following
section comprises a detailed examination of the impact of sample size on two well-
known data mining procedures: naive Bayes classifiers and decision tree induction.
The next section introduces disproportionate stratification and shows how it may be
used to make much more effective use of limited processing resources. This section
also includes a discussion of dynamic and static sampling. This is followed by a
section devoted to the impact of target function complexity on sample size. The final
section provides a summary of the major results, a consideration of their relevance
for small data sets and some brief remarks on the role of sampling for other data
mining procedures.

SAMPLING

Many people reject the idea of sampling on intuitive grounds. Unfortunately,
human intuition is often poor on matters concerning sampling; the erroneous belief
that a larger population implies the need for a correspondingly larger sample is very
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