
404

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.4
User Interaction and Interface

Design with UML
Jesus M. Almendros-Jimenez
Universidad de Almeria, Spain

Luis Iribarne
Universidad de Almeria, Spain

AbstrAct

This chapter will show you how to use and spe-
cialise UML diagrams for describing the user
interfaces of a software system. In order to ac-
complish the description of user interfaces, the
proposed technique considers three specialised
UML diagrams called user-interaction, user-inter-
face, and GUI-class diagrams, which will be built
following a model-driven development (MDD)
perspective. These diagrams can be seen as the
UML-based UI models of the system. In addition,
this chapter is concerned with code-generation
to implement the user interfaces of the system
by using GUI-class diagrams and user-interac-
tion diagrams. A case study of an Internet book
shopping system is introduced in this chapter to
proof and illustrate the proposed user interaction
and interface design technique.

INtrODUctION

The emergence of the unified modelling language
(UML) (OMG, 2005) as an industry standard for
modelling systems has encouraged the use of
automated software tools that facilitate the de-
velopment process from analysis through coding.
The user interface (UI), as a significant part of
most applications, should also be modelled using
UML. UML diagrams could be used to model
user interfaces, and automatic CASE tools could
help to generate code for user interfaces from
UML designs. In general terms, visual model-
ling allows the developers to visualize source
code in a graphical form: graphical abstractions,
such as flow charts to depict algorithmic con-
trol flows and structure charts or simple block
diagrams with boxes representing functions and
subprograms, and so on. UML provides system

 405

User Interaction and Interface Design with UML

architects with a visual language for specifying,
constructing, and documenting the artefacts of
software systems. In particular, user interfaces
should be visually modelled in order to describe
the behaviour of the window system in response
to user interactions.

This chapter is firstly devoted to show how
to use and specialise UML diagrams in order to
describe the user interface and user interactions of
a software system, following a particular model-
driven development (MDD) perspective. Model-
driven development involves creating models
through a methodological process that begins
with requirements and looks into a high-level
architectural design. Model-driven development
facilitates and improves the software analysis and
design and code generation facilities from models
prevent the loss of substantial information during
the transition of a model to its implementation.

In our MDD perspective, we consider the
following steps for user interface design and
modelling:

1. Firstly, we use a UML use case diagram for

extracting the main user interfaces.
2. Secondly, we describe each use case by

means of a special kind of UML activity
diagrams, called user-interaction diagrams,
whose states represent data output actions
and transitions represent data input events.
This perspective allows the designer to
model the user interaction (i.e., input-output
interaction) in each main user interface.

3. Thirdly, each input and output interaction
of the user-interaction diagrams allows the
designer to extract GUI components used
in each user interface. Therefore, we can
obtain a new and specialized version of the
use case diagram representing the user in-
terface design, and a class diagram for GUI
components: user-interface and GUI-class
diagrams, respectively.

4. The user-interaction, user-interface, and
GUI-class diagrams can be seen as the

UML-based user interface models of the
system.

This chapter will also deal with code genera-
tion techniques. In our MDD perspective, the
UML-based user interface models can be used
for generating executable code with the follow-
ing advantages:

1. Rapid prototyping of the developed soft-

ware: Software modellers would find it use-
ful to quickly generate user interfaces from
high-level descriptions of the system.

2. Model validation and refinement: Proto-
typing can detect fails in design and refine-
ment and validation of model by testing user
interfaces and user requirements.

3. Model-based code generation: Generated
code would fit with developed models.

4. Starting point for implementers: Prototypes
can be refined until final implementation.

bAcKGrOUND

In the literature there are some works dealing with
the problem of user interfaces in UML.

Use cases and UI Design

Some of these works (CommentEdition, 2000;
Constantine & Lockwood, 2001; Nunes & Falcao,
2001; Paterno, 2001) are focused on the utilisation
of UML use case diagrams as a “starting point” of
the user interface design, or even as a “high-level
description” of the structure of the user interface.
However, there are some considerations about
the use case diagram style. Following the UML
philosophy, a use case diagram could not be suit-
able for extracting the user interfaces. Use case
diagrams may include some use cases referred to
parts of the system not related to user interfaces
such as classes, human tasks, components of other
systems interacting with us, and so on. Or even

26 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/user-interaction-interface-design-uml/22264

Related Content

Designing a Successful Collaborative Wiki: The Choice between Outcome Quality and Online

Community Needs
Michail Tsikerdekis (2017). International Journal of Technology and Human Interaction (pp. 22-39).

www.irma-international.org/article/designing-a-successful-collaborative-wiki/177217

Integrating ICTs in African Development: Challenges and Opportunities in Sub-Saharan Africa
Bobak Rezaian (2007). Information Communication Technologies and Human Development: Opportunities

and Challenges (pp. 23-56).

www.irma-international.org/chapter/integrating-icts-african-development/22618

Protecting One's Privacy: Insighs into the Views and Nature of the Early Adopters of Privacy

Services
Sarah Spiekermann (2007). Issues and Trends in Technology and Human Interaction (pp. 84-95).

www.irma-international.org/chapter/protecting-one-privacy/24714

Accelerating Economic Inequality and the Moral Responsibilities of Corporate-Employed

Technologists
Alan E. Singer (2015). International Journal of Social and Organizational Dynamics in IT (pp. 28-38).

www.irma-international.org/article/accelerating-economic-inequality-and-the-moral-responsibilities-of-corporate-

employed-technologists/154033

Managerial Careers, Gender, and Information Technology Field
Iiris Aaltio (2009). Human Computer Interaction: Concepts, Methodologies, Tools, and Applications (pp.

2030-2036).

www.irma-international.org/chapter/managerial-careers-gender-information-technology/22367

http://www.igi-global.com/chapter/user-interaction-interface-design-uml/22264
http://www.irma-international.org/article/designing-a-successful-collaborative-wiki/177217
http://www.irma-international.org/chapter/integrating-icts-african-development/22618
http://www.irma-international.org/chapter/protecting-one-privacy/24714
http://www.irma-international.org/article/accelerating-economic-inequality-and-the-moral-responsibilities-of-corporate-employed-technologists/154033
http://www.irma-international.org/article/accelerating-economic-inequality-and-the-moral-responsibilities-of-corporate-employed-technologists/154033
http://www.irma-international.org/chapter/managerial-careers-gender-information-technology/22367

