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ABSTRACT

One important problem in graph theory is graph coloring or graph labeling. Labeling problem is a 
well-studied problem due to its wide applications, especially in frequency assignment in (mobile) com-
munication system, coding theory, ray crystallography, radar, circuit design, etc. For two non-negative 
integers, labeling of a graph is a function from the node set to the set of non-negative integers such that 
if and if, where it represents the distance between the nodes. Intersection graph is a very important sub-
class of graph. Unit disc graph, chordal graph, interval graph, circular-arc graph, permutation graph, 
trapezoid graph, etc. are the important subclasses of intersection graphs. In this chapter, the authors 
discuss labeling for intersection graphs, specially for interval graphs, circular-arc graphs, permutation 
graphs, trapezoid graphs, etc., and have presented a lot of results for this problem.

INTRODUCTION

Almost all problems in the world can be solve by designing graphs. So, during long period graph theo-
ry is being researched. In engineering, physical science, mathematical science, graph has lot of applica-
tions. One important problem in graph theory is graph coloring or graph labeling. L(h,k)-labeling 
problem is a well studied problem due to its wide applications, specially in frequency assignment in 
(mobile) communication system, coding theory, X-ray crystallography, radar, circuit design, etc. For 
two non-negative integers h  and k , an L(h,k)-labeling of a graph G V E= ( , )  is a function f  from the 
node set V  to the set of non-negative integers such that | ( ) ( ) |f x f y h− ≥  if d x y( , ) = 1  and 
| ( ) ( ) |f x f y k− ≥  if d x y( , ) = 2 , where d x y( , )  represents the distance between the nodes x  and y . 
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Intersection graph is a very important subclasses of graph. Unit disc graph, chordal graph, interval graph, 
circular-arc graph, permutation graph, trapezoid graph etc. are the important subclasses of intersection 
graphs.

In this chapter, we discuss L(h,k)-labeling for intersection graphs, specially, for interval graphs, circular-
arc graphs, permutation graphs, trapezoid graphs etc. and have presented a lot of results for this problem.

BASIC CONCEPT OF L(h,k)-LABELING

In this section, the definition and span of L(h,k)-labeling is presented. Different variations of L(h,k)-
labeling is also highlighted in this section. The definition of L(h,k)-labeling is as follows.

Definition 1 L(h,k)-labeling: Given a graph G V E= ( , )  and two nonnegative integers h  and k , an 
L(h,k)-labeling is an assignment of non-negative integers to the nodes of G  such that adjacent nodes 
are labelled using colours at least h  apart, and nodes having a common neighbour are labelled using 
colours at least k  apart. The difference between largest and smallest labels is called the span. The aim 
of the L h k( , ) -labeling problem is to minimize the span. The minimum span over all possible labeling 
functions is denoted by λ

h k
G

,
( )  and is called λ

h k,
-number of G .

In other words, if f x( )  is the label assigned to the node x  then

| ( ) ( ) |f x f y h− ≥ if d x y( , ) = 1  

and

| ( ) ( ) |f x f y k− ≥ if d x y( , ) = 2 , 

where d x y( , )  is the distance (i.e. number of edges) between x  and y .
The L(h,k)-labeling problem can also be referred to as:

• Distance-2-coloring and D2 -node coloring problem (when h k= = 1 );
• Radiocoloring problem and λ -coloring problem (when h = 2  and k = 1 );
• Frequency assignment problem;
• Distance two labeling, etc.

For different values of h  and k  different L(h,k)-labeling problems are addressed by the researchers, 
specially L(2,1) , L(0,1)  and L(1,1) -labeling problems. For general graphs, the lower bound for λ

2,1
( )G  

is ∆+1 . But the upper bound has gradually improved. Griggs and Yeh (1992) proved that 
λ

2 1
2 2

,
( )G ≤ +∆ ∆  and have proposed the following conjecture.

Griggs and Yeh Conjecture

For a graph G  with maximum degree ∆≥ 2 , λ
2,1

2( )G ≤∆ . In 1993, Jonas (1993) has shown that
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