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ABSTRACT

A popular area of graph theory is based on a paper written in 1930 by F. P. Ramsey titled “On a Problem 
on Formal Logic.” A theorem which was proved in his paper triggered the study of modern Ramsey 
theory. However, his premature death at the young age of 26 hindered the development of this area of 
study at the initial stages. The balanced size multipartite Ramsey number mj (H,G) is defined as the 
smallest positive number s such that Kj×s→ (H,G). There are 36 pairs of (H, G), when H, G represent 
connected graphs on four vertices (as there are only 6 non-isomorphic connected graphs on four vertices). 
In this chapter, the authors find mj (H, G) exhaustively for all such pairs in the tripartite case j=3, and 
in the quadpartite case j=4, excluding the case m4 (K4,K4). In this case, the only known result is that m4 
(K4,K4) is greater than or equal to 4, since no upper bound has been found as yet.

HISTORY

After the publication of the original paper by F. P. Ramsey, the resurrection of Ramsey Theory for graphs 
emerged in the paper by Paul Erdös and George Szekeres, published around 1935.

Theorem (by Paul Erdös and George Szekeres)
For any m ≥ 2  and n r m n≥ ( )2, ,  exists and it satisfies

r m n r m n r m n, , ,( )≤ −( )+ −( )1 1  
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Following the publication of the paper by Paul Erdös and George Szekeres, the exact determination 
of these numbers for small graphs has been attempted by many mathematicians. Unfortunately, their 
progress was hindered by the stubbornly resistant (r 5 5,( )), which is presently known to lie between 43 
and 48 (see Vigleik Angeltveit and Brendan D. McKay (Angelteveit, 2017) for the best upper bound of 
48 and Exoo (Exoo, 1989) for the best lower bound of 43). Finding sharp bounds for (r 6 6,( )) appears 
to be an even more arduous task. This has been eloquently expressed by the great mathematician Paul 
Erdös using the following quotation (see 1990 Scientific American article by Ronald Graham and Joel 
Spencer).Suppose aliens invade the earth and threaten to obliterate it in a year’s time unless human 
beings can find the Ramsey number for red five and blue five (r 5 5,( )). We could marshal the world’s 
best minds and fastest computers, and within a year we could probably calculate the value. If the aliens 
demanded the Ramsey number for red six and blue six (r 6 6,( )), however, we would have no choice but 
to launch a pre-emptive attack. – Paul Erdös (1990 Scientific American article by Ronald Graham & 
Joel Spencer)

Researchers are now trying to approach this problem by using new techniques to investigate whether 
the lower bound 43 (Exoo, 1989) and the upper bound 48 (Angelteveit (2017)) could be improved. Off-
shoots of classical Ramsey numbers, introduced by Burger and Vuuren (2004), Syfrizal et al., (2005, 
2012), are the multipartite Ramsey numbers.

Let KN denote the complete graph on N vertices. For any two graphs, say H, G (without loops and 
parallel edges), we say that KN → (H,G), if for any red/blue colouring of KN, given by KN = HR ⊕HB, 
there exists a red copy H in HR or a blue copy G in HB. In Ramsey theory one important part deals with 
the exact determination of Ramsey numbers, r(H,G), defined as the smallest positive number N such 
that KN → (H,G). Formally, the balance multipartite graph K

j s×   can be viewed as a graph consisting of 
the vertex set

V K v m j and n s
j s m n×( ) = ∈ { } ∈ { }{ },

: , ,... , ,...1 2 1 2  

and the edge set

� , : , , ,..., , , , ,...
, ’, ’

E K v v m m j m mand n n
j s m n m n×( ) = ( ) ′ ∈ { } ≠ ′ ∈1 2 1 2 ,, .s{ }{ }  

In such a graph, the set of vertices in the mth  partite set is denoted by { | , ,..., }v n s
mn

∈ { }1 2 . The 
Ramsey number mj(H,G) is defined as the smallest positive number s such that that Kj×s→ (H,G).
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