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ABSTRACT

This chapter presents an introduction to automatic summarization techniques with 
special consideration of the financial and regulatory domains. It aims to provide an 
entry point to the field for readers interested in natural language processing (NLP) 
who are experts in the finance and/or regulatory domain, or to NLP researchers 
who would like to learn more about financial and regulatory applications. After 
introducing some core summarization concepts and the two domains are considered, 
some key methods and systems are described. Evaluation and quality concerns are 
also summarized. To conclude, some pointers for future reading are provided.

INTRODUCTION

Inderjeet Mani defined the goal of automatic summarization (also “summarisation” 
in British English) as “to take an information source, extract content from it, and 
present the most important content to the user in a condensed form and in a manner 
sensitive to the user’s or application’s need” (Mani, 2001). Therefore, the business 
value of it lies in its potential for enhancing the productivity of human information 
consumption (Modaresi et al., 2017): the output of the task of summarizing an 
input text document comprising English prose is a shorter new document or shorter 
version of the original document that conveys most of the most important information 
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contained in the original document, yet takes less time to read than the original full 
document.

Traditionally, we can distinguish between single document summarization, which 
takes as input a single document (source document) that needs to be summarized, and 
multi-document summarization, which takes as input a set of documents covering the 
same topic or topic area (Figure 1). In both cases, a single document, the summary 
(target document) is to be created. We can further distinguish between extractive 
summarization, which computes summaries by selecting text spans (phrases, 
sentences, passages) from the original document or documents, and abstractive 
summarization, which extracts pieces of information in a pre-processing step, and 
then constructs a synthetic new document, which is a summary that communicates 
said extracted facts, or it may even introduce new language not found in the source 
document(s) (Figure 2, right). Mathematically speaking, extractive summarization can 
be seen as a sequence of projections. Extractive summarization have the advantage 
of circumventing the problem of how to generate grammatical sentences as it merely 
selects from existing sentences; it has the disadvantages that a sequence of selected 
sentences may not make for smooth reading, as it is hard to combine them so as 
to maintain cohesion (broadly, to be linked together well at the micro-level) and 
coherence (roughly, to form a meaningful and logical text at the macro-level). The 
history of automatic summarization goes back to the German researcher Hans Peter 
Luhn, who worked on automatic summarization at IBM, where he created the method 
for extractive single-document summarization now named after him (Luhn, 1958).1

We can also distinguish between various kinds of methods. Heuristic methods 
like the Luhn method (outlined below) typically use a human-conceived scoring 

Figure 1. Single-document summarization (left) versus multi-document summarization 
(right).
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