
 �

Chapter I
Enriched Conceptualization of

Subtyping
Terry Halpin

Neumont University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract

When modeling information systems, one often encounters subtyping aspects of the business domain that
can prove challenging to implement in either relational databases or object-oriented code. In practice,
some of these aspects are often handled incorrectly. This chapter examines a number of subtyping is-
sues that require special attention (e.g. derivation options, subtype rigidity, subtype migration), and
discusses how to model them conceptually. Because of its richer semantics, the main graphic notation
used is that of second generation Object-Role Modeling (ORM 2). However, the main ideas could be
adapted for UML and ER, so these are also included in the discussion. A basic implementation of the
proposed approach has been prototyped in Neumont ORM Architect (NORMA), an open-source tool
supporting ORM 2.

INTRODUCTION

In the wider sense, an information system cor-
responds to a business domain or universe of
discourse rather than an automated system. As
the name suggests, the universe of discourse is
the world, or context of interest, about which we
wish to discourse or talk. Most business domains

involve some subtyping, where all instances of
one type (e.g. Manager) are also instances of
a more encompassing type (e.g. Employee). In
this example, Manager is said to be a subtype of
Employee (a supertype).

Various information modeling approaches
exist for modeling business domains at a high
level, for example Entity-Relationship Model-

�

Enriched Conceptualization of Subtyping

ing (ER) (Chen, 1976), the Unified Modeling
Language (UML) (Object Management Group,
2003a, 2003b; Rumbaugh, Jacobson & Booch,
1999), and Object-Role Modeling (ORM) (Hal-
pin, 2006, 2007; Halpin & Morgan, 2008). These
modeling approaches provide at least basic sub-
typing support. In industrial practice however,
certain aspects of subtyping are often modeled
or implemented incorrectly. This is sometimes
due to a lack of appropriate modeling constructs
(e.g. derivations to/from subtypes, subtype ri-
gidity declarations), or to a lack of an obvious
way to implement a subtyping pattern (e.g. his-
torical subtype migration). This paper proposes
solutions to some of these issues. Because of its
richer semantics, the main graphic notation used
is that of ORM 2 (second generation ORM), as
implemented in NORMA, an open source ORM
2 tool. However, the main ideas could be adapted
for UML and ER.

The next section overviews basic subtyping
and its graphical depiction in ORM, UML, and ER,
and identifies the condition under which formal
derivation rules are required. The section after that
proposes three varieties of subtyping (asserted,
derived, and semiderived). The subsequent sec-
tion distinguishes rigid and role subtypes, relates
them to changeability settings on fact type roles,
and discusses a popular party pattern. The next
section discusses various patterns for modeling
history of subtype or role migration. The final
section notes implementation issues, summarizes
the main results, suggests future research topics,
and lists references.

basic subtyping and the need
for derivation rules

Figure 1(a) shows a simple case of subtyping in
ORM 2 notation. Patients are identified by their
patient numbers and have their gender recorded.
Patient is specialized into MalePatient and Fe-
malePatient. Pregnancy counts are recorded for,

and only for, female patients. Prostate status is
recorded only for male patients. In ORM 2, object
types (e.g. Patient) are depicted as named, soft
rectangles. A logical predicate is depicted as a
named sequence of role boxes, each connected
by a line to the object type whose instances may
play that role. The combination of a predicate
and its object types is a fact type—the only data
structure in ORM (relationships are used instead
of attributes). If an object type is identified by a
simple fact type (e.g. Gender has GenderCode)
this may be abbreviated by placing the reference
mode in parentheses.

A bar spanning one or more roles depicts a
uniqueness constraint over those roles (e.g. Each
Patient has at most one Gender). A large dot depicts
a mandatory constraint (e.g. Each Patient has some
Gender). The circled dot with a cross through it
depicts an exclusive-or constraint (Each Patient is
a MalePatient or is a FemalePatient but not both).
Overviews of ORM may be found in Halpin
(2005b, 2006, 2007), a detailed treatment in Halpin
& Morgan (2008), and a metamodel comparison
between ORM, ER, and UML in Halpin (2004).
Various dialects of ORM exist, for example
Natural language Information Analysis Method
(NIAM) (Wintraecken, 1990) and the Predicator
Set Model (PSM) (ter Hofstede et al., 1993).

Figure 1(b) shows the same subtyping ar-
rangement in UML. In UML, the terms “class”
and “subclass” are used instead of “object type”
and “subtype””. The “{P}” notation is the author’s
nonstandard addition to UML to indicate that an
attribute is (at least part of) the preferred identifier
for instances of the class. ORM and UML show
subtypes outside their supertype(s), and depict
the “is-a” relationship from subtype to supertype
by an arrow.

The Barker ER notation (Barker, 1990), argu-
ably the best industrial ER notation, instead uses
an Euler diagram, placing the subtype shapes
within the supertype shape, as shown in Figure
1(c). In spite of its intuitive appeal, the Barker ER
subtyping notation is less expressive than that

14 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/enriched-conceptualization-subtyping/23781

Related Content

Malware Analysis and Classification
Jairaj Singhand Kishore Kumar Kumar Senapati (2023). Malware Analysis and Intrusion Detection in

Cyber-Physical Systems (pp. 42-63).

www.irma-international.org/chapter/malware-analysis-and-classification/331299

RuCAS: Rule-Based Framework for Managing Context-Aware Services with Distributed Web

Services
Hiroki Takatsuka, Sachio Saiki, Shinsuke Matsumotoand Masahide Namamura (2015). International

Journal of Software Innovation (pp. 57-68).

www.irma-international.org/article/rucas/126616

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets
Hyggo Oliveira de Almeida, Leandro Silva, Glauber Ferreira, Emerson Loureiroand Angelo Perkusich

(2009). Software Applications: Concepts, Methodologies, Tools, and Applications (pp. 3361-3380).

www.irma-international.org/chapter/validation-verification-software-systems-using/29566

Generic Model of the Business Model and Its Formalization in Object-Z
Marcela Daniele, Paola Martellottoand Gabriel Baum (2007). Verification, Validation and Testing in

Software Engineering (pp. 358-384).

www.irma-international.org/chapter/generic-model-business-model-its/30756

Software Defects Prediction Model with Self Improved Optimization
Shantappa G. Gollagi, Jeneetha Jebanazer Jand Sridevi Sakhamuri (2022). International Journal of

Software Innovation (pp. 1-21).

www.irma-international.org/article/software-defects-prediction-model-with-self-improved-optimization/309735

http://www.igi-global.com/chapter/enriched-conceptualization-subtyping/23781
http://www.irma-international.org/chapter/malware-analysis-and-classification/331299
http://www.irma-international.org/article/rucas/126616
http://www.irma-international.org/chapter/validation-verification-software-systems-using/29566
http://www.irma-international.org/chapter/generic-model-business-model-its/30756
http://www.irma-international.org/article/software-defects-prediction-model-with-self-improved-optimization/309735

