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ABSTRACT

In this chapter, the authors will try to go through the problem of learning the complex-valued neural 
networks (CVNNs) using particle swarm optimization (PSO); which is one of the open topics in the 
machine learning society. Quantitative structure-activity relationship (QSAR) modelling is one of the 
well developed areas in drug development through computational chemistry. This relationship between 
molecular structure and change in biological activity is center of focus for QSAR modelling. Machine 
learning algorithms are important tools for QSAR analysis, as a result, they are integrated into the drug 
production process. Predicting the real-valued drug activity problem is modelled by the CVNN and is 
learned by a new strategy based on PSO. The trained CVNNs are tested on two drug sets as a real world 
bench-mark problem. The results show that the prediction and generalization abilities of CVNNs is su-
perior in comparison to the conventional real-valued neural networks (RVNNs). Moreover, convergence 
of CVNNs is much faster than that of RVNNs in most of the cases.
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INTRODUCTION

The problem of drug design is to find drug candidates from a large collection of compounds that will bind 
to a target molecule of interest. The development of a new drug is still a challenging, time-consuming 
and cost-intensive process and due to the enormous expense of failures of candidate drugs late in their 
development. Designing ‘drug-like’ molecules using computational methods can be used to assist and 
speed up the drug design process (Lipinski, 2004; Leeson, et al., 2004; Li, 2005). The major bottlenecks 
in drug discovery ware addressed with computer-assisted methods, such as QSAR models (Hansch, 1969), 
where the molecular activities are critical for drug design. The QSAR models used to predict the drug 
activity within a large number of chemical compounds using their descriptors that are often generated 
with high- noise in high-dimensional space. Nowadays, machine learning algorithms have been used in 
the modelling of QSAR problems (Duch, et al., 2007; Chin, & Chun, 2012; Gertrudesa, et al., 2012). 
They extract information from experimental data by computational and statistical methods and generate 
a set of rules, functions or procedures that allow them to predict the properties of novel objects that are 
not included in the learning set. Formally, a learning algorithm is tasked with selecting a hypothesis that 
best supports the data. Considering the hypothesis to be a function f mapping from the data space X to 
the response space Y; i.e., f: X→Y . The learner selects the best hypothesis f* from a space of all possible 
hypotheses F by minimize errors when predicting value for new data, or if our model includes a cost 
function over errors, to minimize the total cost of errors.

As shown in Figure 1, the QSAR modelling is heavily dependent on the selection of molecular de-
scriptors; if the association of the descriptors selected to biological property is strong the QSAR model 
can identify valid relations between molecular features and biological property/activity. Thus, uninfor-
mative or redundant molecular descriptors should be removed using some feature selection methods 
during (filters) or before (wrappers) the learning process. Subsequently, for tuning and validation of the 
predictively of learned QSAR model, one of the validation strategy can be applied likes cross-validation, 
leave-one-out or the full data set is divided into a training set and a testing set prior to learning (See 
(El-Telbany, 2014) for a survey).

Figure 1. General steps of developing QSAR models
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