
122

Chapter VII
Data Modeling and

Functional Modeling:
Examining the Preferred Order of

Using UML Class Diagrams and Use
Cases

Peretz Shoval
Ben-Gurion University of the Negev, Israel

Mark Last
Ben-Gurion University of the Negev, Israel

Avihai Yampolsky
Ben-Gurion University of the Negev, Israel

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract

In the analysis phase of the information system development, the user requirements are studied, and
analysis models are created. In most UML-based methodologies, the analysis activities include mainly
modeling the problem domain using a class diagram, and modeling the user/functional requirements
using use cases. Different development methodologies prescribe different orders of carrying out these
activities, but there is no commonly agreed order for performing them. In order to find out whether the
order of analysis activities makes any difference, and which order leads to better results, a comparative
controlled experiment was carried out in a laboratory environment. The subjects were asked to create
two analysis models of a given system while working in two opposite orders. The main results of the
experiment are that the class diagrams are of better quality when created as the first modeling task, and
that analysts prefer starting the analysis by creating class diagrams first.

 123

Data Modeling and Functional Modeling

INTRODUCTION

The main goal of this research is to examine the
better order of performing the two main activi-
ties in the analysis phase of UML-based software
development processes: functional modeling with
use cases, and domain (conceptual data) modeling
with class diagrams. Though system development
is usually an iterative process of refinement, the
analysis stage of each iteration should be driven
by a specific modeling activity, implying that
activity ordering in iterative development is a
legitimate and important question. As we show in
the next section ‎of this chapter, existing develop-
ment methodologies differ in a prescribed order
of performing these activities: some recommend
to start with identifying conceptual classes and
continue with developing use cases, using the
identified classes or objects, while others suggest
to start with developing use cases and continue
with building a class diagram based on the con-
cepts appearing in the use cases.

Methodologies starting with creating a domain
model by building a class diagram argue that the
initial class diagram maps the problem domain
and allows describing the functional requirements
within a well-defined context. The entities in the
class diagram serve as an essential glossary for
describing the functional requirements and, since
it is an abstraction of the part of the real world
relevant for the system, it only rarely changes and
can serve as a solid basis for other future systems
as well. On the other hand, methodologies start-
ing with creating use cases argue that the classes
should be based on the functional requirements,
and thus should be elicited from them. One reason
for this argument is that creating a domain model
before learning the functional requirements can
lead to a class diagram that include entities that
are out of the system’s scope.

We expect that creating a domain model prior
to defining the functional requirements with use
cases should yield better results, i.e. better class
diagrams and use cases. This is because objects

are more “tangible” than use cases; analysts can
identify and describe more easily the objects
they are dealing with and their attributes than the
functions or use cases of the developed system.
Use cases are not “tangible” and may be vague,
since different users may define the expected
system functionality in different terms. Repeating
Dobing & Parsons (2000), the roles and values of
use cases are unclear and debatable. Of course,
conceptual data modeling is not trivial either; it is
not always clear what is an object, how to classify
objects into classes, what are the attributes and
the relationships, etc. - but still the task of data
modeling is more structured and less complex
compared to the task of defining and describing
use cases. Besides, the analyst has to create just
one class diagram for the system rather than many
use cases. While in domain modeling the analyst
concentrates only on the data-related aspects, in
use-case modeling, the analyst actually deals at
the same time with more aspects. Use cases are
not merely about functions; they are also about
data, user-system interaction and the process logic.
Because of the above, it seems to us that starting
the analysis process with the more simple and
structured task should be more efficient (in terms
of time) and effective (in terms of quality of the
analysis products). Not only that the first product
(the conceptual data model) will be good, it will
ease the creation of the following one (the uses
cases) since creating use cases based on already
defined classes reduces the complexity of the
task. In the view of the above, we also expect that
analysts would prefer working in that order, i.e.
first create a class diagram and then use cases.

The above expectations and assumptions
can be supported by both theory and previous
experimental work. Shoval & Kabeli (2005) have
studied the same issue in the context of the FOOM
methodology. According to their experiment,
analysts who start the analysis process with data
modeling produce better class diagrams than those
who start the process with functional modeling.
They also found that analysts prefer working in

19 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/data-modeling-functional-modeling/23787

Related Content

High-Integrity Model-Based Development
K. Lanoand S. Kolahdouz-Rahimi (2015). Handbook of Research on Innovations in Systems and Software

Engineering (pp. 479-499).

www.irma-international.org/chapter/high-integrity-model-based-development/117937

Design and Evaluation of Automated Scoring: Java Programming Assignments
Yuki Akahane, Hiroki Kitayaand Ushio Inoue (2015). International Journal of Software Innovation (pp. 18-

32).

www.irma-international.org/article/design-and-evaluation-of-automated-scoring/133112

Risk-Based Privacy-Aware Information Disclosure
Alessandro Armando, Michele Bezzi, Nadia Metouiand Antonino Sabetta (2015). International Journal of

Secure Software Engineering (pp. 70-89).

www.irma-international.org/article/risk-based-privacy-aware-information-disclosure/136467

Modeling Autonomic Systems: Review, Classification, and Research Challenges
Marwa Hachicha, Riadh Ben Halimaand Ahmed Hadj Kacem (2022). International Journal of Software

Innovation (pp. 1-22).

www.irma-international.org/article/modeling-autonomic-systems/303585

Virtual Agent as a User Interface for Home Network System
Hiroyasu Horiuchi, Sachio Saiki, Shinsuke Matsumotoand Masahide Namamura (2015). International

Journal of Software Innovation (pp. 13-23).

www.irma-international.org/article/virtual-agent-as-a-user-interface-for-home-network-system/122790

http://www.igi-global.com/chapter/data-modeling-functional-modeling/23787
http://www.irma-international.org/chapter/high-integrity-model-based-development/117937
http://www.irma-international.org/article/design-and-evaluation-of-automated-scoring/133112
http://www.irma-international.org/article/risk-based-privacy-aware-information-disclosure/136467
http://www.irma-international.org/article/modeling-autonomic-systems/303585
http://www.irma-international.org/article/virtual-agent-as-a-user-interface-for-home-network-system/122790

