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ABSTRACT

Genetic Regulatory Networks (GRNs) represent the interconnections between genomic entities that govern 
the regulation of gene expression. GRNs have been represented by various types of mathematical models 
that capture different aspects of the biological system. This chapter discusses the relationships among the 
most commonly used GRN models that can enable effective integration of diverse types of sub-models. 
A detailed model in the form of stochastic master equation is described, followed by it coarse-scale and 
deterministic approximations in the form of Probabilistic Boolean Networks and Ordinary Differential 
Equation models respectively.

INTRODUCTION

Genetic Regulatory Networks (GRNs) represent the interconnections between genomic entities that gov-
ern the regulation of gene expression. Since biological regulatory networks are extremely detailed with 
numerous interactions, a single mathematical model to represent the whole biological regulatory system 
is generally not feasible. Depending on the purpose of modeling, the mathematical model representing 
the GRN brings in a level of abstraction. The focus of the modeling can be capturing interactions between 
RNA expressions, protein-protein interactions or interactions between metabolites. Usually, only parts 
of the regulome (i.e. genes, proteins and metabolites involved in gene regulation) such as transcription 
factors, enhancers, microRNA etc. are made explicit in a mathematical model of a GRN.
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To provide further background on genetic regulatory network modeling, we present broad classifica-
tions of the models that are commonly used to capture the relationships between genomic entities. GRN 
models usually belong to either static or dynamical models. Static models are concerned with providing 
the topology of the network (such as the connectivity of various genomic entities) without attempting 
to model the dynamics of the interactions. Dynamic models on the other hand not only capture the 
connectivity of the network entities but also provide the time dependent functional relationships that 
govern the interactions. Commonly used pathway models as presented in databases such as KEGG and 
StringDB belong to the category of static models as they primarily capture the connectivity structure 
without the network dynamics. Examples of dynamic models include ordinary differential equation 
models to model the average concentration of mRNA expressions (Kampen, 1991) or Dynamic Bayesian 
Network (Murphy, 2002) models. Based on the model complexity involving inference of connectivity 
and time dependent relationships, the experimental data requirements for elucidating dynamic models 
are significantly higher as compared to static models.

To further explore various levels of time dependent behavior of genes or proteins, dynamic network 
models can be essentially categorized as discrete where the amount of genomic entity is modeled as 
discrete values or continuous where the genomic entities are models as continuous variables. Since the 
dynamics of biological entities consist of discrete changes based on the number of molecules created 
or destroyed, a fine-scale discrete model can potentially faithfully capture the dynamics of the genomic 
entities. Note that we have categorized the dynamic models as discrete or continuous based on the 
representation of the genomic entity but a similar categorization can be applied based on discrete or 
continuous representation of time. Some models such as stochastic master equations (also commonly 
known as Chemical Master Equations) incorporate time as a continuous quantity whereas models like 
Boolean Networks update states at discrete time intervals. The next level of characterizations is based on 
whether the models considered are stochastic or deterministic. A number of studies have shown that the 
generation of mRNA or protein expression is stochastic in nature (Arkin, Ross, & McAdams, 1998) and 
thus a stochastic model is suitable to capture the true change in state probability distribution with time. 
However, available experimental data may limit the inference of the parameters of a stochastic model. 
For instance, common genomic characterizations using microarrays provide an average observation of 
the mRNA expressions and are not suitable for inferring the parameters of a detailed stochastic model. 

Thus, deterministic models such as differential equation models are often used to represent the av-
erage behavior of the biological system (De Jong, 2001) or in other words modeling moments of the 
distribution rather than the detailed distribution. Dynamic models can be further classified as detailed 
fine-scale models or coarse-scale models where the detail refers to the level of discretization involved in 
modeling the gene or protein expression. For instance, our interest may be in modeling the up or down 
regulation of genes and thus a coarse-scale Boolean Network (Kauffman S. A., 1993; Kauffman S., 
1969) with ON and OFF states for each gene will be adequate. However, if our interest is in capturing 
the individual mRNA molecule generation or degradation, a detailed fine-scale model such as stochastic 
master equations (Gillespie D. T., 1977; Pal & Bhattacharya, 2010) with an enormous state space will 
be required. The above categorizations are presented in a graphical form in Figure 1.

Based on the above discussion, we observe that fine-scale stochastic discrete dynamical models 
such as stochastic master equations can provide a detailed representation of the dynamic interactions 
but maybe limited by the enormous computational complexity involved in its simulation and huge data 
requirements for estimation of its parameters. This chapter will present a review of stochastic master 
equation modeling followed by some of its low complexity approximations with focus on reduced state 



 

 

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/relationships-between-models-of-genetic-

regulatory-networks-with-emphasis-on-discrete-state-stochastic-

models/243113

Related Content

Social Media, Crowdsourcing, and Marketing
Shivani Inder (2021). Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital

Marketing (pp. 64-73).

www.irma-international.org/chapter/social-media-crowdsourcing-and-marketing/280643

Big Data, 3D Printing Technology, and Industry of the Future
Micheal Omotayo Alabi (2017). International Journal of Big Data and Analytics in Healthcare (pp. 1-20).

www.irma-international.org/article/big-data-3d-printing-technology-and-industry-of-the-future/204445

Web 2.0 Mash-Up System for Real Time Data Visualisation and Analysis Using OSS
Wajid Khan, Fiaz Hussainand Edmond C. Prakash (2015). Handbook of Research on Trends and Future

Directions in Big Data and Web Intelligence (pp. 208-231).

www.irma-international.org/chapter/web-20-mash-up-system-for-real-time-data-visualisation-and-analysis-using-

oss/137026

Integrated Approach for Automatic Crackle Detection Based on Fractal Dimension and Box

Filtering
Cátia Pinho, Ana Oliveira, Cristina Jácome, João Manuel Rodriguesand Alda Marques (2020). Data

Analytics in Medicine: Concepts, Methodologies, Tools, and Applications  (pp. 815-832).

www.irma-international.org/chapter/integrated-approach-for-automatic-crackle-detection-based-on-fractal-dimension-

and-box-filtering/243145

A Novel Framework of Health Monitoring Systems
Sonam Gupta, Lipika Goeland Abhay Kumar Agarwal (2021). International Journal of Big Data and

Analytics in Healthcare (pp. 1-14).

www.irma-international.org/article/a-novel-framework-of-health-monitoring-systems/268414

http://www.igi-global.com/chapter/relationships-between-models-of-genetic-regulatory-networks-with-emphasis-on-discrete-state-stochastic-models/243113
http://www.igi-global.com/chapter/relationships-between-models-of-genetic-regulatory-networks-with-emphasis-on-discrete-state-stochastic-models/243113
http://www.igi-global.com/chapter/relationships-between-models-of-genetic-regulatory-networks-with-emphasis-on-discrete-state-stochastic-models/243113
http://www.irma-international.org/chapter/social-media-crowdsourcing-and-marketing/280643
http://www.irma-international.org/article/big-data-3d-printing-technology-and-industry-of-the-future/204445
http://www.irma-international.org/chapter/web-20-mash-up-system-for-real-time-data-visualisation-and-analysis-using-oss/137026
http://www.irma-international.org/chapter/web-20-mash-up-system-for-real-time-data-visualisation-and-analysis-using-oss/137026
http://www.irma-international.org/chapter/integrated-approach-for-automatic-crackle-detection-based-on-fractal-dimension-and-box-filtering/243145
http://www.irma-international.org/chapter/integrated-approach-for-automatic-crackle-detection-based-on-fractal-dimension-and-box-filtering/243145
http://www.irma-international.org/article/a-novel-framework-of-health-monitoring-systems/268414

