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ABSTRACT

Withtheriseofneuralnetwork-basedclassifiers,itisevidentthatthesealgorithmsareheretostay.
Even thoughvariousalgorithmshavebeendeveloped, theseclassifiersstill remainvulnerable to
misclassificationattacks.Thisarticleoutlinesanewnoiselayerattackbasedonadversariallearning
andcomparestheproposedmethodtoothersuchattackingmethodologieslikeFastGradientSign
Method,Jacobian-BasedSaliencyMapAlgorithmandDeepFool.Thisworkdealswithcomparing
thesealgorithmsfortheusecaseofsingleimageclassificationandprovidesadetailedanalysisof
howeachalgorithmcomparestoeachother.
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1. INTRodUCTIoN

Generativemodelshavebecomethedominantformofdatagenerationtoolinrecentyearsduetotheir
vastlysuperiorresultsandoptimizedmethod.Goodfellow(2017)showedhowAdversarialLearning
can be used as a technique by training two networks simultaneously, by training them together
underasinglelosssignal,inordertoproducebetterresults.Thispaperlooksintothismethodology
ofadversarially trainingsamplesfor theusecaseofproducingnoisyimagesforattackingimage
classifiers.Severalpreviousmodelsusingadversarial learninghaveshown tocreate images that
areextremelyclosetotheiroriginaltrainingsample(Arjovsky&Bottou,2017),whichonlyhelps
us touse thismethod for creating aDeepConvolutionalGenerativeAdversarialNetworkbased
architecturethatcancreatetheaforementionednoisyimages.Previouslytriedandtestedmodelsexist
thatuseGenerativeAdversarialnetworksastheirbasenetworks.Theseinclude:DeepConvolutional
GenerativeAdversarialNetworks(Radford,Metz,&Chintala,2015)whichuseaconvolutionalneural
networkas it’sdiscriminatorandadeconvolutionalneuralnetworkasagenerator forgenerating
images.Radfordetal.(Radford,Metz,&Chintala,2015)usevarioustechniquesfortheirnetwork,
includingtheAll-ConvolutionalNeuralNetwork(Springenberg,Dosovitskiy,Brox,&Riedmiller,
2014)whichreplacesthecommonlyusedmax-poolinglayerwithanotherconvolutionallayerthat
containsastrideof2thatprovidesthesamefunctionalityontheirdataset,alongwiththefamously
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usedBatchNormalization(Ioffe&Szegedy,2015).EarthMover’sdistance(Hou,Yu,&Samaras,
2016) is used in Wasserstein GAN(Arjovsky, Chintala, & Bottou, 2017) as the loss function to
compareandanalysethedifferencebetweenthehistogramoftheoriginaldatasetandtheonethat
needstobegenerated;andBayesianGAN(Saatchi&Wilson,2017)whichtakesadvantageofthe
Bayesianfunctiontoapproximatetheprobabilitydensityoftheoriginaldatasetandthegenerated
samplesusesitasthelossfunction.

Theaforementionedarchitecturesproduceremarkableresultsintheirownfieldofimage
generation from the original dataset. However, these architectures fail to meet the need for
adversarialimagegenerationastherequirementforthesameisthattheimagegeneratedbythe
networkmustworkintandemwiththeoriginalimagetoproduceanewnoisyimagelayerthat
must thenbeapplied to theoriginaldataset toproduceaclassificationof that sameoriginal
classifier.thisintricateprocessinvolvesanintermediarystepforthegenerationofthenoisyimage
thattheselegacynetworkscannotmake.Hence,thispapertakesinspirationfromGoodfellow
etal.(Goodfellow,Shlens,&Szegedy,2014),whichusesamethodcalledFastSignGradient
Method.Thismethodtrainsthelossfunctionoftheclassifierandthatofthenoisegeneratoras
acombinedfunctionusingthefollowingequation:



Intheequationabove,thenoiselayerisdenotedby x * ,theoriginalimageisdenotedbyx,the
magnitudeoftheperturbationsisϵ,isthetruthlabelyandthenoiseparameterisΘ.Thelossfunction
forthesameisgivenbyJ x yΘ, ,( ) .

In another method proposed by Papernot et al. (2015), Jacobian-Based Saliency Map, the
authorofthepaperusesaninputimagexinamodelfthathasaclassificationmetricjandatarget
classificationtwherethedifferencebetweentheprobabilityofclassificationtandjisreducedand
allotherclassificationdifferencesareincreasedusingthefollowingequation:



AnotherexampleofworkrelatedtoAdversarialAttacksistheDeepFoolframeworkthat
is later explained in this paper as well. Moosavi-Dezfooli et al. (Moosavi-Dezfooli, Fawzi,
& Frossard, 2016) contribute to the attacking mechanism benchmarking method by creating
a perturbation detector that classifies different classifiers for adversarial attack checking by
analyzingtheirrobustnessforitsattackingalgorithmandcomparestheirmetricstopreviously
knownclassifiersalongwithascore.

Theworkdoneinthispapermainlyfocusesonthefactthataclassifiercanbefooledinto
misclassifyingthelabelonanyimagewhenoverlappedwithanoiselayersuchthatthenoise
layerhasbeenadversariallycraftedforthatspecificmisclassification.Thispaperisorganized
asfollows:section2willlookatthevariouslegacyandhistoricalmethodsofmisclassifying
databasedondifferentalgorithms;Section3detailstheexperimentalsetupofthenetwork
whereeachcomponenthasbeenthoroughlyexplained;Andfinally,section4outlinestheresults
ofacomparativestudydoneonthealgorithmproposed,alongwithvariousotheralgorithms
that havebeenpreviouslymentioned,wrapping theworkwith the conclusionof thiswork
alongwithfutureprospects.
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