Chapter 4.3 Virtual Reality Simulation in Human Applied Kinetics and Ergo Physiology

Bill Ag. Drougas ATEI Education Institute of Epirus, Greece

ABSTRACT

Virtual reality is today an excellent tool for a full simulated experience in a modern environment where any researcher or any individual scientist may work with vital experimental environments or use parameters that sometimes does not really exist. It is already a vital step for the future of science and for the modern experiment. Ergo physiology today has many applications for research. We can find new unknown parameters for the human body searching biokinetics and ergo physiology, and it is time to use modern technologies and applications. The vital issues discussed in this chapter may offer many applications for human kinetics and movement and may also discuss biokinetics research using the physical laws and parameters in various biokinetics and physiology fields.

INTRODUCTION

Virtual reality is today an important part of modern scientific methodology and research, using modern high-speed computers of lately designed technologies for research and simulation in various scientific fields such as ergo physiology and biokinetics. This is a new field in contemporary science, methodology, and experimentation, and we can recognize that during the past years, it has continued with great success. An important field using this new way of research is the simulation of human movement in ergo physiology and applied biokinetics science. Virtual reality is very useful for researchers in these fields because they can have simulations of the physical human body at any time they want for study or experimentation.

BACKGROUND

One of the first authors who wrote about virtual reality was Howard Rheingold (1991), who wrote about data visualization and 3-D CAD (computeraided design) in which someone may use his or her hands and fingers. Many applications can be found from the middle war period by the U.S. Air Force to create flying simulations.

Myron Krueger, during the '60s, worked on the affiliation of human and computer with special research in computer-controlled responsive environments, which were named by him artificial reality (Krueger, 1993). He also designed the video place, a system that contains a projection screen and a video camera that is controlled by a computer. By this method, human movements in each activity are transferred to computer graphics in software (Boudouridis, 1994).

So, there can be a connection between human and technical things in space with computer graphics. This was one of the first methodologies in human-kinetics research and applications.

Tom Furness was another scientist who designed the Super Cockpit for the U.S. Air Force after many years of research. In a small place, a human could use computers and a HMD (headmounted display) to understand vital secrets of the flight without any danger (Furness, 1991).

But the man who is the father of the terms virtual reality and reality engine is Jaron Lanier, an informatics scientist who, with another young man named Tom Zimmerman, established the Visual Programming Language Research Inc in 1980 (Boudouridis, 1994). This company was the first to make important tools for virtual reality programs and applications, such as data gloves and HMDs.

ISSUES

In the beginning, many other scientists worked with computer data for virtual reality applications in various fields with very big success. Today, there are many different fields and applications of virtual reality technology. Table 1 summarizes some of the virtual reality applications similar to those of ergo physiology.

Especially in the fields of ergo physiology and biokinetics, virtual reality is used in many applications. Some of the characteristics of human movement, the human body, and parameters such as space, geometry, color, and sound may help virtual reality programs become more effective in various methodologies of research and virtual applications.

The importance of this is to find a methodology for using virtual reality and a way to recognize the results, such as some of the official physiology results that can give to researchers many new discoveries in existing science and theory, or future science research in finding new signals from the human body during simulations.

Today we have all the modern technology to make better simulations for the human body and to see new fields that had not previously existed. This is, of course, the future of research.

For example, it is not possible for anyone to fly at high speeds without any danger so that scientists can see the behavior of the human body or parameters such as blood pressure, the behavior of the heart, muscle energy, signals or other problems in the eyes, and so forth. But with virtual reality simulations, we can today register many of these parameters and standards, see how they change after the experimentation, and see it is used in our theories.

The very best aspect of this method is that we can stop the experiment when we must or when we want to begin the experiment again from the last step, or, if we want, we can design another model with new parameters. So, we can always put something new into our experimentation and theory, and this is important because every person is different from every other. By this methodology, we can register statistical effects or make a very good mathematical analysis of the problem to continue with advanced research and measurements or to make other project experiments. 4 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-global.com/chapter/virtual-reality-simulation-human-applied/24344

Related Content

Research Commentaries on Cangelosi's "Solutions and Open Challenges for the Symbol Grounding Problem"

Stevan Harnad, Luc Steels, Tony Belpaeme, Carol J. Madden, Stéphane Lallée, Peter Ford Dominey, Stephen J. Cowley, Juyang Weng, Alberto Greco, Barbara Giolito, Domenico Parisi, Vincent C. Müller, Angelo Loula, João Queiroz, Ricardo Gudwinand Angelo Cangelosi (2011). *International Journal of Signs and Semiotic Systems (pp. 55-79).*

www.irma-international.org/article/research-commentaries-cangelosi-solutions-open/52604

Cryptomodules in Wireless Networks Using Biometric Authentication: Securing Nodes in Wireless Networks

Martin Drahanský, Petr Hanáek, František Zboil, Martin Henzl, František V. Zboil, Jaegeol Yimand Kyubark Shim (2016). *Improving Information Security Practices through Computational Intelligence (pp. 198-226).* www.irma-international.org/chapter/cryptomodules-in-wireless-networks-using-biometric-authentication/136490

DeTER Framework: A Novel Paradigm for Addressing Cybersecurity Concerns in Mobile Healthcare

Rangarajan (Ray) Parthasarathy (64b0c314-e570-435f-83be-702d299043f1, David K. Wyant, Prasad Bingi, James R. Knightand Anuradha Rangarajan (2021). *International Journal of Intelligent Information Technologies (pp. 1-24)*.

www.irma-international.org/article/deter-framework/277070

Ghost Kitchen Evolution: From the Traditional Restaurant to Virtual Eateries

Roshan Kumar Shivaand Geetha Manoharan (2025). Impact of AI and the Evolution of Future Ghost Kitchens (pp. 401-422).

www.irma-international.org/chapter/ghost-kitchen-evolution/375413

Natural Language Understanding and Assessment

Vasile Rus, Philip M. McCarthy, Danielle S. McNamaraand Arthur C. Graesser (2009). Encyclopedia of Artificial Intelligence (pp. 1179-1184).

www.irma-international.org/chapter/natural-language-understanding-assessment/10389