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ABSTRACT

A bio-inspired robotic brain is presented where the same spiking neural network (SNN) can implement 
five variations of learning by conditioning (LC): classical conditioning (CC), and operant condition-
ing (OC) with positive/negative reinforcement/punishment. In all cases, the links between input stimuli, 
output actions, reinforcements and punishments are strengthened depending on the stability of the delays 
between them. To account for the parallel processing nature of neural networks, the SNN is implemented 
on a field-programmable gate array (FPGA), and the neural delays are extracted via an adaptation 
of the synapto-dendritic kernel adapting neuron (SKAN) model, for a low resource demanding FPGA 
implementation of the SNN. A custom robotic platform successfully tested the ability of the proposed 
architecture to implement the five LC behaviors. Hence, this work contributes to the engineering field by 
proposing a scalable low resource demanding architecture for adaptive systems, and the cognitive field 
by suggesting that both CC and OC can be modeled as a single cognitive architecture.
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INTRODUCTION

Two of the most fundamental learning mechanisms known to exist in nature are classical conditioning 
(CC) and operant conditioning (OC). CC consists in strengthening the association between an uncondi-
tional stimulus (US), which automatically triggers a response, and a conditional stimulus (CS), which 
does not. When the CS is followed by the US systematically enough, the CS ends up triggering the re-
sponse even when the US is not presented (Pavlov, 1927). OC consists in strengthening the association 
between a response and a reinforcement or a punishment (Skinner, 1938). If the association is between 
the response and the reinforcement, the frequency of the response increases. However, if the association 
is between the response and the punishment, the frequency of the response decreases. Generally, this 
sequence of a response followed by a reinforcement or a punishment will only be systematic within a 
given context. For example, an experimental design could be set within which a rat will only receive 
food when pressing a lever if a green light was presented first. In this situation, the behavior of the rat at 
the beginning of the experiment would be exploratory. However, once in a while, the rat will press the 
lever while the green light is presented and therefore, food will be given to the animal.

Separate spiking neural network (SNN) architectures were recently proposed as very low resource 
demanding implementations of CC and OC in robotic controllers/brains (Cyr et al., 2015; Dumesnil et 
al., 2016; Dumesnil et al., 2016, “Robotic”). SNNs use time stamping instead of rate coding to represent 
individual neural firings (Gerstner & Kistler, 2002), which makes SNNs naturally suited for CC and 
OC representation. Indeed, in order to implement CC and OC, it is necessary to detect delays between 
stimuli, responses, reinforcements and punishments. Neuronal spikes thus appear to be a good infor-
mation transmission method for extracting those delays. The architectures presented in (Dumesnil et 
al., 2016) were simulated in very large scale hardware description language (VHDL) using an adapted 
version of the synapto-dendritic kernel adapting neuron (SKAN) model (Afshar et al., 2014). The latter 
allows implementing the delay extraction process with very few hardware resources (Afshar et al., 2014).

Recent work also allowed to test the architectures proposed in (Dumesnil et al., 2016) within a 
dynamically changing real-world environment (Dumesnil et al., 2016, “Robotic”). For this purpose, 
a robotic validation platform was conceived and placed in a maze. It was first configured with a CC 
architecture and successfully demonstrated its capacity to learn its way through the maze. It was then 
reconfigured with an OC architecture and once again was successful in learning the correct associations. 
The separate CC and OC architectures presented in (Cyr et al., 2015; Dumesnil et al., 2016; Dumesnil et 
al., 2016, “Robotic”) followed the generally accepted distinction between CC and OC learning (Weiss, 
2014). However, a different perspective is introduced in (Dumesnil et al., 2016, “Robotic”), with the 
suggestion that they share a common SNN architecture and thereby, a single learning process. This 
single architecture was then validated through simulation and robotic implementation. However, the 
validation process described in (Dumesnil et al., 2016, “Robotic”) only targeted CC and one form of 
OC: positive reinforcement (PR). In the present article, this work is extended to all four forms of OC: 
PR, positive punishment (PP), negative reinforcement (NR) and negative punishment (NP). Reinforce-
ment and punishment can be functionally distinguished as translating respectively into an increase and 
a decrease in response frequency. The positive cases imply that a stimulus is presented to the system, 
while the negative cases imply that a stimulus stops being presented to the system. Thus, the four forms 
of OC are as follows: in PR, a favorable stimulus is presented following the response; in PP, an aversive 
stimulus is presented following the response; in NR, an aversive stimulus stops being presented follow-
ing the response; in NP, a favorable stimulus stops being presented following the response (Murphy & 
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