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The Problem Domain: 
Human Genetics

Human genetics can be broadly defined as the 
study of genes and their role in human biology. 
An important goal of human genetics is to un-

derstand the mapping relationship between inter-
individual variation in DNA sequences (i.e., the 
genome) and variability in disease susceptibility 
(i.e., the phenotype). Stated another way, how 
does one or more changes in an individual’s 
DNA sequence increase or decrease their risk of 
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developing a common disease such as cancer or 
cardiovascular disease through complex networks 
biomolecules that are hierarchically organized 
and highly interactive? Understanding the role 
of DNA sequences in disease susceptibility is 
likely to improve diagnosis, prevention and treat-
ment. Success in this important public health 
endeavor will depend critically on the degree of 
nonlinearity in the mapping between genotype 
to phenotype. Nonlinearities can arise from phe-
nomena such as locus heterogeneity (i.e., different 
DNA sequence variations leading to the same 
phenotype), phenocopy (i.e., environmentally 
determined phenotypes), and the dependence of 
genotypic effects on environmental factors (i.e., 
gene-environment interactions or plastic reaction 
norms) and genotypes at other loci (i.e., gene-gene 
interactions or epistasis). It is this latter source 
of nonlinearity, epistasis, that is of interest here. 
Epistasis has been recognized for many years as 
deviations from the simple inheritance patterns 
observed by Mendel (Bateson, 1909) or deviations 
from additivity in a linear statistical model (Fisher, 
1918) and is likely due, in part, to canalization or 
mechanisms of stabilizing selection that evolve 
robust (i.e., redundant) gene networks (Gibson & 
Wagner, 2000; Waddington, 1942, 1957; Proulx 
& Phillips, 2005). 

 Epistasis has been defined in multiple dif-
ferent ways (e.g., Brodie, 2000; Hollander, 1955; 
Philips, 1998). We have reviewed two types of 
epistasis, biological and statistical (Moore & 
Williams, 2005). Biological epistasis results from 
physical interactions between biomolecules (e.g., 
DNA, RNA, proteins, enzymes, etc.) and occur 
at the cellular level in an individual. This type 
of epistasis is what Bateson (1909) had in mind 
when he coined the term. Statistical epistasis on 
the other hand occurs at the population level and 
is realized when there is interindividual variation 
in DNA sequences. The statistical phenomenon of 
epistasis is what Fisher (1918) had in mind. The 
relationship between biological and statistical 
epistasis is often confusing but will be important 

to understand if we are to make biological infer-
ences from statistical results (Moore & Williams, 
2005). 

The focus of the present study is the detec-
tion and characterization of statistical epistasis 
in human populations using data mining and 
machine learning methods. We first review the 
concept difficulty and then review a multifactor 
dimensionality reduction (MDR) approach that 
was developed specifically for this domain. We 
then present some ideas about how to scale the 
MDR approach to datasets with thousands of 
attributes (i.e., genome-wide analysis). Finally, 
we end with some ideas about how nonlinear 
genetic models might be statistically interpreted 
to facilitate making biological inferences.

concept dIffIculty

Epistasis can be defined as biological or statistical 
(Moore & Williams, 2005). Biological epistasis 
occurs at the cellular level when two or more 
biomolecules physically interact. In contrast, 
statistical epistasis occurs at the population level 
and is characterized by deviation from additiv-
ity in a linear mathematical model. Consider the 
following simple example of statistical epistasis 
in the form of a penetrance function. Penetrance 
is simply the probability (P) of disease (D) given 
a particular combination of genotypes (G) that 
was inherited (i.e., P[D|G]). A single genotype 
is determined by one allele (i.e., a specific DNA 
sequence state) inherited from the mother and 
one allele inherited from the father. For most 
single nucleotide polymorphisms or SNPs, only 
two alleles (e.g., encoded by A or a) exist in the 
biological population. Therefore, because the 
order of the alleles is unimportant, a genotype 
can have one of three values: AA, Aa or aa. The 
model illustrated in Table 1 is an extreme example 
of epistasis. Let’s assume that genotypes AA, aa, 
BB, and bb have population frequencies of 0.25 
while genotypes Aa and Bb have frequencies 
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