Chapter 3 Visualisation of Mathematical Thinking

Hervé Lehning

Independent Researcher, France

ABSTRACT

Drawing is not proving. For a long time, this argument has been used to avoid the use of visualisation in mathematics. Nevertheless, a number of proofs, concepts, and ideas are easier to understand with the help of a small drawing. In this chapter, the authors show that visualisation in mathematics is helpful not only to illustrate but also to create ideas, and this at all levels.

INTRODUCTION

The scene took place at the time of my studies. My professor was at the blackboard, in a packed lecture hall. In front of his fascinated students, he was proving a deep theorem of geometry, using number of diagrams he drew with confidence. The blackboard was becoming white but, suddenly, he stopped in the middle of a diagram (see Figure 1).

Figure 1. Hervé Lehning, New Math Diagram (© 2014, H. Lehning)

 $\begin{array}{c} H(X, A) \longrightarrow H(X, V) \longleftarrow H(X-A, V-A) \\ \downarrow q & \downarrow q \\ H(X/A, V/A) \longrightarrow H(X, \end{array}$

As time went by, the professor looked more and more puzzled. After a while, he started to make a little drawing, unfortunately hidden by his body. Suddenly, he looked illuminated, erased his drawing and resumed his proof with number of diagrams; we noted them without understanding well. At the end

DOI: 10.4018/978-1-7998-5753-2.ch003

of the lecture, the bravest students went to the desk to ask him some explanations about his little drawing. His reply was unequivocal: "there's no question to fill your spirit with bad habits of thought". His reason to refuse was his pedagogical ideas: we must be freed of the errors of the past, and among them of the habit of using drawings to help intuition.

PROOFS WITHOUT WORDS

This conception of mathematics was dominant at the age of what was called "modern mathematics" or "new math" (see [1]). Nevertheless, number of results has visual proofs (see [2]). The simplest of them is probably the calculation of the sum of the first natural numbers as: 1 + 2 + 3 + 4 + 5. Of course, in this case, we find 15 easily but it will be more difficult to compute: 1 + 2 + 3 + 4 + ... + 100. The general case: 1 + 2 + 3 + 4 + ... + n is even more complex. The idea to compute it easily is to model this sum as the area of a staircase (see Figure 2).

Figure 2. Hervé Lehning, 1 + 2 + 3 + 4 + 5 + 6 (© 2014, *H. Lehning*)

By copying the staircase upside-down, we get a rectangle (see Figure 3).

Thus, twice the sum: 1 + 2 + 3 + 4 + 5 + 6 equals the area of the rectangle with side-lengths 6 and 7, which is 42 thus: 1 + 2 + 3 + 4 + 5 + 6 = 21. For the same reason: $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$.

Today, this kind of proofs without words is generally accepted when they concern natural numbers (that is to say: 1, 2, 3, *etc.*). The same technique allows us to prove that the sum of the first n odd numbers equals the square of n (see Figure 4).

The identity: $(a + b)^2 = a^2 + 2 ab + b^2$ has a proof that, *a priori*, looks of the same kind. If the sides of the blue and orange squares are *a* and *b*, their areas equal a^2 and b^2 while those of the green rectangles equal the product *ab* (see Figure 5).

24 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-global.com/chapter/visualisation-of-mathematical-thinking/259680

Related Content

Technology Integration (Level 5.0)

Lawrence A. Tomei (2005). *Taxonomy for the Technology Domain (pp. 194-216)*. www.irma-international.org/chapter/technology-integration-level/30051

Concept Maps and Meaningful Learning

Patricia Lupion Torres, Luiza Tatiana Forteand Josiane Maria Bortolozzi (2010). *Handbook of Research on Collaborative Learning Using Concept Mapping (pp. 430-448).* www.irma-international.org/chapter/concept-maps-meaningful-learning/36307

Key Factors and New Directions of Multimedia Learning Design

Haido Samaras, Thanasis Giouvanakis, Despina Bousiouand Konstantinos Tarabanis (2010). Affective, Interactive and Cognitive Methods for E-Learning Design: Creating an Optimal Education Experience (pp. 207-227).

www.irma-international.org/chapter/key-factors-new-directions-multimedia/40559

How Literacy Emerges from Living Books in the Digital Era: New Chances for Young Linguistically Disadvantaged Children

Marian J.A.J. Verhallen (2009). *Cognitive Effects of Multimedia Learning (pp. 326-339).* www.irma-international.org/chapter/literacy-emerges-living-books-digital/6618

Using Narrative and Game-Schema Acquisition Techniques to Support Learning from Educational Games

Alan D. Koenigand Robert K. Atkinson (2009). *Cognitive Effects of Multimedia Learning (pp. 312-325).* www.irma-international.org/chapter/using-narrative-game-schema-acquisition/6617