
526

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 23

DOI: 10.4018/978-1-7998-3016-0.ch023

ABSTRACT

Modern software systems are growing increasingly complex, requiring increased complexity of software
and software development process (SDP). Most software complexity measurement approaches focus on
software features such as code size, code defects, number of control paths, etc. However, software com-
plexity measurement should not only focus on code features but on features that cover several aspects of
SDP in order to have a more complete approach to software complexity. To implement this approach, an
extensive literature review for identifying factors that contribute to the complexity of SDP was performed
and seventeen complexity factors were identified. As there were indications that the identified factors
were not independent from each other but there were interrelations between them, statistical methods for
identifying the underlined relations and refining them were applied, resulting to the final set of measures
used in the proposed model. Finally, the proposed model has been tested in five software projects and
the results were evaluated.

INTRODUCTION

As information technology (IT) evolves and becomes part of every aspect of everyday life, the demand
for more powerful and reliable software becomes a necessity. However, this leads to software applica-
tions becoming larger and more complex, in terms of development and maintenance. In the future, this

Modeling Software Development
Process Complexity

Vyron Damasiotis
Department of Accounting and Finance, University of Applied Sciences of Thessaly – TEI Thessaly,

Larisa, Greece

Panos Fitsilis
Department of Business Administration, University of Applied Sciences of Thessaly – TEI Thessaly,

Larisa, Greece

James F. O’Kane
Edinburgh Napier University, Business, Edinburgh, UK

527

Modeling Software Development Process Complexity

tendency is expected to continue to increase (Da-Wei, 2007). As a result, almost half of IT projects
cannot fulfill their initial requirements in terms of time, cost and quality (Bolat, Kusdemir, Uslu, &
Temur., 2017; Altahtooth & Emsley, 2017). The consequences of increased software complexity have
been identified and studied early either from the aspect of cost e.g. COCOMO (Boehm, 1981) or in other
aspects of software project development such as schedule delays, quality deficiencies and increased error
rates (Banker, Datar, & Zweig, 1989).Most current software complexity measurement approaches are
based on aspects of code such as Lines of Code (LOC) (Park, 1992), McCabe Cyclomatic Complexity
(McCabe, 1976) and Halstead complexity measure (Halstead, 1977).

In this research, we approach software complexity from a wider point of view identifying complex-
ity aspects within the whole software development process including technical software development
parameters, software development environment and various properties of the software system being
developed. Furthermore, this research focuses on identifying factors that can be assessed at the early
stages of software development process permitting the early estimation of expected SDP complexity
and allowing the timely planning of appropriate actions to cope with it. The structure of this paper is as
follows. In section 2, the current software complexity measurement approaches and the identification of
SDP complexity factors are presented. The methodological approach followed in this research is given
in section 3. Next in section 4, the steps and results of the statistical analysis performed as well as the
model definition are presented. In section 5 the proposed model was applied in two case studies and the
results are evaluated. Finally, in sections 6 and 7 the conclusions and limitations of this research are given.

CURRENT COMPLEXITY APPROACHES

Software complexity relates to both software product and to SDP. Several approaches of software com-
plexity have been proposed by researchers according to the domain where they originated from.

Zuse (1990) approached software complexity from a programmer’s psychological perspective and
defined it as the difficulty to analyze, maintain, test, design and modify software. Along the same lines,
Kushwaha & Mishra (2006) defined software complexity as the degree of difficulty to understand and
verify a system or a component. Keshavarz, Modiri, & Pedram, (2011) stated that although there were
different approaches for defining software complexity, most of them comply with Zuse’s approach.
Ribbers & Schoo (2002) in their research for complex software implementation programs, examined
complexity through the prism of implementation complexity and identified three complexity dimen-
sions: variety, variability and integration. Variety is defined as the different states a system can take.
Variability of a system is defined as the dynamics of its elements and the interrelations between them.
Finally, integration is referred to as the planned changes during the implementation program including
IT systems and business processes.

Software engineers approach software complexity by examining various properties and code char-
acteristics such as code size, number of software defects, development cost and time, number of control
paths and frequency of operators and operands within the software. However, the existence of more
classes, control flows or modules in code does not necessarily mean that is more complex than another
one with less of these characteristics and therefore a more rigorous approach is needed (Ghazarian, 2015).
In addition, Khan, Mahmood, Amralla, & Mirza, (2016a) in their research compared several complexity
measurement models based on code characteristics and identified that different models produce different
results as they capture different aspects of software code. Other researchers are studying software project

26 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/modeling-software-development-process-

complexity/261041

Related Content

Using Kolmogorov Complexity to Study the Coevolution of Header Files and Source Files of C-

alike Programs
Liguo Yu (2021). Research Anthology on Recent Trends, Tools, and Implications of Computer

Programming (pp. 814-824).

www.irma-international.org/chapter/using-kolmogorov-complexity-to-study-the-coevolution-of-header-files-and-source-

files-of-c-alike-programs/261055

Information Systems Development and the Need for Computer Aided Method Engineering
Ajantha Dahanayake (2001). Computer-Aided Method Engineering: Designing CASE Repositories for the

21st Century (pp. 1-20).

www.irma-international.org/chapter/information-systems-development-need-computer/6872

Organization and Information Support of Expert Reviews of I&C Systems Modernization at NPP

of Ukraine
Alexander Klevtsovand Vladislav Inyushev (2018). Computer Systems and Software Engineering:

Concepts, Methodologies, Tools, and Applications (pp. 1678-1707).

www.irma-international.org/chapter/organization-and-information-support-of-expert-reviews-of-ic-systems-modernization-

at-npp-of-ukraine/192941

Teaching Globally Distributed Software Development (DSD): A Distributed Team Model
Stuart Faulkand Michal Young (2012). Computer Engineering: Concepts, Methodologies, Tools and

Applications (pp. 1475-1491).

www.irma-international.org/chapter/teaching-globally-distributed-software-development/62524

Attaining Semantic Enterprise Interoperability Through Ontology Architectural Patterns
Rishi Kanth Saripalleand Steven A. Demurjian (2018). Computer Systems and Software Engineering:

Concepts, Methodologies, Tools, and Applications (pp. 705-740).

www.irma-international.org/chapter/attaining-semantic-enterprise-interoperability-through-ontology-architectural-

patterns/192899

http://www.igi-global.com/chapter/modeling-software-development-process-complexity/261041
http://www.igi-global.com/chapter/modeling-software-development-process-complexity/261041
http://www.irma-international.org/chapter/using-kolmogorov-complexity-to-study-the-coevolution-of-header-files-and-source-files-of-c-alike-programs/261055
http://www.irma-international.org/chapter/using-kolmogorov-complexity-to-study-the-coevolution-of-header-files-and-source-files-of-c-alike-programs/261055
http://www.irma-international.org/chapter/information-systems-development-need-computer/6872
http://www.irma-international.org/chapter/organization-and-information-support-of-expert-reviews-of-ic-systems-modernization-at-npp-of-ukraine/192941
http://www.irma-international.org/chapter/organization-and-information-support-of-expert-reviews-of-ic-systems-modernization-at-npp-of-ukraine/192941
http://www.irma-international.org/chapter/teaching-globally-distributed-software-development/62524
http://www.irma-international.org/chapter/attaining-semantic-enterprise-interoperability-through-ontology-architectural-patterns/192899
http://www.irma-international.org/chapter/attaining-semantic-enterprise-interoperability-through-ontology-architectural-patterns/192899

