
677

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 30

DOI: 10.4018/978-1-7998-3016-0.ch030

ABSTRACT

Using coding education to promote computational thinking and nurture problem-solving skills in children
has become an emerging global trend. However, how different input and output modalities in coding
tools affect coding as a problem-solving process remains unclear. Of interest are the advantages and
disadvantages of graphical and tangible interfaces for teaching coding to children. We conducted four
kids coding workshops to study how different input and output methods in coding affected the problem-
solving process and class dynamics. Results revealed that graphical input could keep children focused
on problem solving better than tangible input, but it was less provocative for class discussion. Tangible
output supported better schema construction and casual reasoning and promoted more active class en-
gagement than graphical output but offered less affordance for analogical comparison among problems.
We also derived insights for designing new tools and teaching methods for kids coding.

INTRODUCTION

Educators and researchers have identified the benefits of learning computer programming (a.k.a. cod-
ing) at a young age. Papert (1980) envisioned that learning coding could help children overcome fear
of math, and help them to learn actively. This insight has been later emphasized and proven by other
researchers. Clements et al. found that children who learned programming outperformed those who did
not in reflectivity, divergent thinking, and metacognitive abilities (Clements, 1986). Strand et al. (1986)
reported that programming facilitated collaboration among students, improved their social skills, and

From Virtual to Physical
Problem Solving in Coding:

A Comparison on Various Multi-Modal
Coding Tools for Children Using the

Framework of Problem Solving

Kening Zhu
City University of Hong Kong, China

678

From Virtual to Physical Problem Solving in Coding

encouraged greater focus on their work. As the inventors of Scratch (Maloney et al., 2010) and ScratchJr
(Flannery et al., 2013), Resnick et al. (2009) argued that through coding, children can develop “compu-
tational thinking” (Wing, 2006), which could cultivate creativity and important problem-solving strate-
gies. Solomon (2005) suggested that “computer programming can be a useful, creative, and thoroughly
entertaining second language for students at all levels.” More recently, Wong et al. (2015) investigated the
impact of coding education at primary schools in Hong Kong, and reported an improvement in the overall
performance of the students in mathematics, and the development of soft skills, after learning coding.

The revealed benefits of coding education have motivated many research efforts on new coding tools
for children as an alternative to the conventional textual programming environment. The concept of visual
programming (Bragg & Driskill, 1994) uses graphical symbols to represent coding concepts and allows
children to compose computer programs by piecing graphic icons together. Although textual coding has
its own benefits of low viscosity and high expandability (Green & Petre, 1996), visual programming,
especially block building, has significant advantages over textual mode for children just entering the
venue of computing. It allows children to focus more on learning the computational concepts rather than
the complex syntax. As the tangible user interfaces (TUIs) emerged, researchers have also developed
tangible block-based programming tools (e.g., Horn & Jacob, 2007). Studies show that graphical-user-
interface-based visual programming can achieve better independence in study and learning outcome,
while tangible programming is easier to use, more inviting, and more supportive for collaboration (Bers
& Horn, 2009; Horn, Solovey, Crouser & Jacob, 2009; Resnick et al. 2009).

In spite of many research efforts on children’s programming education, existing work has mostly
emphasized comparing user experience (e.g., the usability of coding interface) with different interface
modalities. For example, Horn, Crouser and Marina (2012 suggested that children might have difficulty
in operating the mouse on a graphical user interface. The emergence of touch surface technology has
removed such barriers. Prior studies of hybrid coding interfaces advocated for providing users with the
flexibility to choose a preferred modality (Horn, Crouser & Marina, 2012), but the impact of different
systems on learning dynamics (e.g., peer interaction and interaction between teachers and students) is
largely overlooked. Oviatt el. al’s (2012) research revealed the impacts of different interfaces on ideation
and problem solving for high school and university students, but how different systems would affect
young children in learning computational thinking and problem solving is still unclear. A recent study
(Sapounidis, Demetriadis & Stamelos, 2015) compared children’s performance with graphical input and
tangible input for robotics, and it suggested fewer programming errors occurred and better debugging
was achieved with tangible input. This research examined different input methods for one unified output
presentation (a physical robot). However, there was no detailed discussion on the potential affordances of
different embodiment (graphical/tangible) of the problem itself, which could affect the problem-solving
process (Czarnocka, 1995). In other words, there still lacks investigation on the affordance of different
combinations of input and output modalities on passing problem-solving-related knowledge to children.

In this paper, we explore whether different variations of input and output combinations of coding
tools for children (graphical input + graphical output, graphical input + tangible output, tangible input
+ graphical output, tangible input + tangible output) can adequately support the process of learning and
problem solving. Based on the classification by Brown and Chandrasekaran (2014), we conceptualized
the act of computer programing as one kind of design-problem-solving process, where the final goal is
clearly known but the problem is ill-structured and open-ended with unclear decomposition plans. Such
a process requires important cognitive skills, including problem schema construction, analogical com-

16 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/from-virtual-to-physical-problem-solving-in-

coding/261049

Related Content

On Software Architecture Processes and Their Use in Practice
Perla Velasco-Elizondoand Humberto Cervantes (2018). Computer Systems and Software Engineering:

Concepts, Methodologies, Tools, and Applications (pp. 1610-1631).

www.irma-international.org/chapter/on-software-architecture-processes-and-their-use-in-practice/192938

Secure Baseband Techniques for Generic Transceiver Architecture for Software-Defined Radio
Nikhil Kumar Marriwala, Om Prakash Sahuand Anil Vohra (2021). Research Anthology on Recent Trends,

Tools, and Implications of Computer Programming (pp. 1961-1983).

www.irma-international.org/chapter/secure-baseband-techniques-for-generic-transceiver-architecture-for-software-

defined-radio/261112

Software Module Clustering Using Bio-Inspired Algorithms
Kawal Jeetand Renu Dhir (2021). Research Anthology on Recent Trends, Tools, and Implications of

Computer Programming (pp. 788-813).

www.irma-international.org/chapter/software-module-clustering-using-bio-inspired-algorithms/261054

Core Kernels for Complex Network Analysis
 (2018). Creativity in Load-Balance Schemes for Multi/Many-Core Heterogeneous Graph Computing:

Emerging Research and Opportunities (pp. 30-58).

www.irma-international.org/chapter/core-kernels-for-complex-network-analysis/195890

Challenges on Porting Lattice Boltzmann Method on Accelerators: NVIDIA Graphic Processing

Units and Intel Xeon Phi
Claudio Schepke, João V. F. Limaand Matheus S. Serpa (2018). Analysis and Applications of Lattice

Boltzmann Simulations (pp. 30-53).

www.irma-international.org/chapter/challenges-on-porting-lattice-boltzmann-method-on-accelerators/203086

http://www.igi-global.com/chapter/from-virtual-to-physical-problem-solving-in-coding/261049
http://www.igi-global.com/chapter/from-virtual-to-physical-problem-solving-in-coding/261049
http://www.irma-international.org/chapter/on-software-architecture-processes-and-their-use-in-practice/192938
http://www.irma-international.org/chapter/secure-baseband-techniques-for-generic-transceiver-architecture-for-software-defined-radio/261112
http://www.irma-international.org/chapter/secure-baseband-techniques-for-generic-transceiver-architecture-for-software-defined-radio/261112
http://www.irma-international.org/chapter/software-module-clustering-using-bio-inspired-algorithms/261054
http://www.irma-international.org/chapter/core-kernels-for-complex-network-analysis/195890
http://www.irma-international.org/chapter/challenges-on-porting-lattice-boltzmann-method-on-accelerators/203086

