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AbstrAct

Trauma audit is intended to develop effective care 
for injured patients through process and outcome 
analysis, and dissemination of results. The system 
records injury details such as the patient’s sex and 
age, the mechanism of the injury, various measures 
of the severity of the injury, initial management 
and subsequent management interventions, and 
the outcome of the treatment including whether 
the patient lived or died. Ten years’ worth of 
trauma audit data from one hospital are modelled 
as an Artificial Neural Network (ANN) in order 
to compare the results with a more traditional 

logistic regression analysis. The output was set to 
be the probability that a patient will die. The ANN 
models and the logistic regression model achieve 
roughly the same predictive accuracy, although 
the ANNs are more difficult to interpret than the 
logistic regression model, and neither logistic 
regression nor the ANNs are particularly good 
at predicting death. For these reasons, ANNs are 
not seen as an appropriate tool to analyse trauma 
audit data. Results do suggest, however, the useful-
ness of using both traditional and non-traditional 
analysis techniques together and of including as 
many factors in the analysis as possible.
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An Artificial Neural Network (ANN) attempts to 
model human intelligence using the neurons in 
a human brain as an analogy. ANNs have been 
described numerous times (Lee & Park, 2001; 
Bose & Mahapatra, 2001; Setiono, Thong, & 
Yap, 1998; Lee, Hung Cheng, & Balakrishnan, 
1998), but a brief description is that the network 
accepts a series of factors as input, which it 
processes to output a probability that the input 
belongs to a certain class. For example, in the 
case of the trauma data analysed in this study, 
the characteristics of the trauma are the input 
to the ANN, which then outputs the probability 
that the patient will die. The processing is done 
by layers of neurons (called hidden layers) which 
apply a weight to each input factor according to 
how important that factor is in calculating the 
classification probability. The weight is learned 
by the network during its training. In training, 
a series of input factors to which the correct 

classification is known is fed into the ANN. The 
ANN then adjusts its weights to minimise the 
error between its predicted classification and the 
known correct class. A pictorial representation 
of an ANN is shown in Figure 1.

An ANN has the potential to discriminate ac-
curately between patients who will live and those 
who will die, and can capture complex relation-
ships between factors that traditional analysis 
methods may miss. However, there are two poten-
tial problems with using ANNs to analyse trauma 
data. First, they are affected by imbalances in the 
data (Fu, Wang, Chua, & Chu, 2002). A common 
characteristic of medical data is its imbalance 
(Cios & Moore, 2002). What this means is that 
the attribute of interest to data miners is likely 
to be present only in a minority of records in the 
dataset. In the case of the trauma data discussed 
here, a much higher percentage of patients lived 
than died. The second disadvantage with neural 
networks is that it is very difficult to explain and 
to justify the model. In other words, after train-
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Output of h1, h1out = g(w1x1 + w3x2 + b1)
Output of h2, h2out = g(w2x1 + w4x2 + b2)
Output of node y, the output layer which uses the sigmoid function and is the probability of a certain class, for instance DEATH 
= 1, given the input vector x,
p(DEATH = 1 | x) = s(v1(h1out) + v2(h2out) + b0)
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