
314

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

DOI: 10.4018/978-1-7998-5788-4.ch013

ABSTRACT

Software bugs (or malfunctions) pose a serious threat to software developers with many known and
unknown bugs that may be vulnerable to computer systems, demanding new methods, analysis, and
techniques for efficient bug detection and repair of new unseen programs at a later stage. This chap-
ter uses evolutionary grey wolf (GW) search optimization as a feature selection technique to improve
classifier efficiency. It is also envisaged that software error detection would consider the nature of the
error when repairing it for remedial action instead of simply finding it either faulty or non-defective.
To address this problem, the authors use bug severity multi-class classification to build an efficient and
robust prediction model using multilayer perceptron (MLP), logistic regression (LR), and random forest
(RF) for bug severity classification. Both tests are performed on two software error datasets, namely
Ant 1.7 and Tomcat.

Hybrid Multi-Objective Grey
Wolf Search Optimizer and
Machine Learning Approach
for Software Bug Prediction

Mrutyunjaya Panda
 https://orcid.org/0000-0001-5713-9220

Utkal University, India

Ahmad Taher Azar
 https://orcid.org/0000-0002-7869-6373

Faculty of Computers and Artificial Intelligence, Benha University, Benha, Egypt & College of
Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia

315

Hybrid Multi-Objective Grey Wolf Search Optimizer and Machine Learning Approach
﻿

1. INTRODUCTION

The defect in the software product appears to be the one where the code developed does not meet the
requirements of the end-user. Such a defect in the software product is referred to as a bug in the code
that prevents the product from working properly. Looking into today’s digital age, a human being totally
dependent on software and a little bug (or defect) may have serious consequences in human life (Rana et
al., 2015). Software testing and bug fixing is a precondition for software delivery that takes almost 50% to
60% of the total effort required for software development (Mishra & Mishra, 2009). Early identification
of such software bugs (or defects) with defective modules saves a huge amount of effort and cost. Since
the software product is too large, complex and versatile, checking all test classes after a code change is
not a good idea, but software metrics such as code-based matrices and/or software change matrices can
be used to test faulty software modules (Choudhary et al., 2018; Malhotra, 2016). While code-based
matrices are used to find the size and complexity of the code, there is a change between two versions
of the software in the software change matrices. Researchers use either the full or subset of features of
these software matrices to build an efficient and accurate model to enhance the quality of the software
(Gondra, 2008). It is important to develop a quality software product by accurately detecting software
bugs at the early stage of the software development life cycle and then taking action to remove them.

Software development takes place at the following stages while handling software bugs in code
(Grishma & Anjali, 2015): a) bug spotting, b) bug assortment, c) bug scanning, d) bug prediction and
e) bug removal. The first stage refers to the occurrence of software defects, if any, by means of a code
inspection, of such a defect and then a test to detect malfunctions in the software. After this initial
identification step, the bug assortment is done for categorization followed by a bug scan to analyze the
details of the present bug. Then, in the last two stages, make software bug prediction and removal using
some promising methods to improve the quality of software.

It is observed that the prevalent seed of finding bugs in the software product includes: user coolness,
ambiguous objectives and puzzling objectives, imperfect specification, lack of assets, lack of communi-
cation between group members and poor testing (Venkata et al., 2005; Rajkumar & Alagarsamy, 2013).
As per IEEE 104 standard, software fault proneness may be classified as falling within any of the fol-
lowing (Mikyeong & Hong, 2014): (a) bug or defect resulting from the failure of the developer to meet
the requirements of the end-user; (b) failure to comply with the previous required task of the software
products; or incorrect results are received by the customer for each input entered; (c) error occurs by c
Several techniques have been proposed by many researchers to detect software bugs based on their types
in the recent past (Jia & Han, 2013).

Feature selection algorithms are dimensionality reduction methods often associated to data mining
tasks of classification or clustering (Kaen & Algarni, 2019; Czibula et al., 2016; Hassanien et al., 2015;
Xu et al., 2000; Emary et al., 2014a; Banu et al., 2014; Aziz et al., 2012, 2013a, 2020; Anter et al.,
2020; Sayed et al., 2019). These methods provide a reduced set of the input features while preserving
the relevant discriminatory information. Although different types of wrapper-based feature selection
have recently been developed, meta-heuristic optimization algorithms have gained a great deal of atten-
tion for their crucial role in detecting optimal feature subsets for efficient classification or prediction
in many applications because they are based on simple concepts and easily implementable (Pilla et al.,
2019; Gorripotu et al., 2019; Najm et al., 2019; Ammar et al., 2019; Ben Smida et al., 2018; Kumar et
al., 2015a; Hassanien et al., 2014a; Zhu & Azar, 2011). Some example are particle swarm optimization
(Chengying et al., 2012; Kamal et al., 2020; Sallam et al., 2020; Inbarani et al., 2014a,b, 2015a; Jothi et

22 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/hybrid-multi-objective-grey-wolf-search-

optimizer-and-machine-learning-approach-for-software-bug-

prediction/271044

Related Content

Ways to View the World: A Standard Ontology as the Reality Framework and the World Code
Azamat Abdoullaev (2008). Reality, Universal Ontology and Knowledge Systems: Toward the Intelligent

World (pp. 28-57).

www.irma-international.org/chapter/ways-view-world/28309

Cellular Automata
Terry Bossomaier (2008). Applications of Complex Adaptive Systems (pp. 57-84).

www.irma-international.org/chapter/cellular-automata/5134

The Dynamics of Product Development in Software Startups: The Case for System Dynamics
Narendranath Shanbhagand Eric Pardede (2019). International Journal of System Dynamics Applications

(pp. 51-77).

www.irma-international.org/article/the-dynamics-of-product-development-in-software-startups/226252

Extrapolated Biogeography-Based Optimization (eBBO) for Global Numerical Optimization and

Microstrip Patch Antenna Design
M. R. Lohokare, S.S. Pattnaik, S. Devi, B.K. Panigrahi, S. Dasand J. G. Joshi (2010). International Journal

of Applied Evolutionary Computation (pp. 1-26).

www.irma-international.org/article/extrapolated-biogeography-based-optimization-ebbo/47064

The Management of Knowledge Risks: What do We Really Know?
Susanne Durst, Guido Brunsand Thomas Henschel (2016). International Journal of Knowledge and

Systems Science (pp. 19-29).

www.irma-international.org/article/the-management-of-knowledge-risks-what-do-we-really-know/160845

http://www.igi-global.com/chapter/hybrid-multi-objective-grey-wolf-search-optimizer-and-machine-learning-approach-for-software-bug-prediction/271044
http://www.igi-global.com/chapter/hybrid-multi-objective-grey-wolf-search-optimizer-and-machine-learning-approach-for-software-bug-prediction/271044
http://www.igi-global.com/chapter/hybrid-multi-objective-grey-wolf-search-optimizer-and-machine-learning-approach-for-software-bug-prediction/271044
http://www.irma-international.org/chapter/ways-view-world/28309
http://www.irma-international.org/chapter/cellular-automata/5134
http://www.irma-international.org/article/the-dynamics-of-product-development-in-software-startups/226252
http://www.irma-international.org/article/extrapolated-biogeography-based-optimization-ebbo/47064
http://www.irma-international.org/article/the-management-of-knowledge-risks-what-do-we-really-know/160845

