
Integrating Patterns into CASE Tools 1

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter I

Integrating Patterns into
CASE Tools

Joan Peckham
University of Rhode Island, USA

Scott J. Lloyd
University of Rhode Island, USA

ABSTRACT
Software patterns are used to facilitate the reuse of object-oriented designs.
While most Computer Aided Software Engineering (CASE) tools support the use
of Unified Modeling Language (UML) (Alhir & Oram, 1998) to extract the
design from the software engineer and assist in development, most do not
provide assistance in the integration and code generation of software patterns.
In this chapter, we analyze the Iterator software pattern (Gamma et al., 1995)
for the semantics that would be used in a CASE-design tool to help the software
engineer to integrate this pattern into a design and then generate some of the
code needed to implement the pattern. This work is based on semantic data
modeling techniques that were previously proposed for the design of active
databases (Brawner, MacKellar, Peckham & Vorbach, 1997; Peckham,
MacKellar & Doherty, 1995).

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.irm-press.com

�������

IRM PRESS

This chapter appears in the book, Practicing Software Engineering in the 21st Century by Joan Peckham.
Copyright © 2003, IRM Press, an imprint of Idea Group Inc. Copying or distributing in print or electronic
forms without written permission of Idea Group Inc. is prohibited.

2 Peckham & Lloyd

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INTRODUCTION
One of the intents of the object-oriented (OO) programming paradigm is to

assist in the reuse of code through the use of classes that bundle data structures and
procedures in such a way that they could more easily be moved from one
implementation to another. When OO languages were first introduced, code libraries
were developed to permit the sharing of objects and classes. At the same time,
Object-Oriented Analysis and Design (OOAD) techniques were being developed
(Booch, 1994; Coad & Yourdon, 1991; Jacobson, 1992; Rumbaugh et al., 1991;
Wirfs-Brock, Wilkerson & Weiner, 1990). This gave us a set of notations for
expressing the design of OO applications. The libraries also became a vehicle for the
reuse of the OO designs and led to the capture of software patterns or designs that
are frequently reused in software applications but are somewhat independent of
particular application types. One of the most often cited book archives is Design
Patterns: Elements of Reusable Object-Oriented Software (Gamma, Helm,
Johnson, Vlissides & Booch, 1995). A combination of text, UML and code samples
is used to communicate the patterns.

Early industrial experience indicates that patterns speed the development of
systems but are hard to write (Beck et al., 1996). So a few CASE tools provide
computer assistance to the programmer in choosing and integrating automatically
generated code for the patterns in their applications. Tools that support the use of
software patterns include those by Budinsky, Finnie, Vlissides and Yu (1996), Florijn,
Meijers and van Winsen (1997) and Paulisch (1996). While these tools are just
beginning to emerge, none have integrated code generation and general design in a
generic way that permits seamless code specification with patterns. For example,
the techniques are not generally language independent and are unable to generate
code in more than one language. Some existing tools generate code but into a
different workspace from the general software specification and coding environ-
ment, requiring the cutting and pasting of code from the pattern code space.

All software patterns have alternative implementations. These are typically
explained using text and sample code. Software engineers are then expected to use
this information to construct their own implementation of the pattern. Our goal here
is to capture the semantics of patterns well enough that they can be presented to the
software engineer via named choices in the CASE tool and then be used to generate
the code. In Peckham and MacKellar (2002) we began to elaborate the choices in
the Observer pattern of Gamma et al. (1995). In this paper we look at the Iterator
pattern from the same source.

CASE TOOLS
CASE tools are used to assist software engineers in all aspects of the software

lifecycle. These tools can help a team to manage, design, implement, test and

8 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/chapter/integrating-patterns-into-case-

tools/28106

Related Content

Transformation of Platform-Independent Model into Platform-Specific Model

in Model-Driven Architecture
Yashwant Singhand Manu Sood (2014). Uncovering Essential Software Artifacts

through Business Process Archeology (pp. 88-113).

www.irma-international.org/chapter/transformation-of-platform-independent-model-into-platform-

specific-model-in-model-driven-architecture/96615

Software Review History and Overview
Yuk Kuen Wong (2006). Modern Software Review: Techniques and Technologies

(pp. 12-36).

www.irma-international.org/chapter/software-review-history-overview/26899

Towards Next Generation Provenance Systems for e-Science
Fakhri Alam Khan, Sardar Hussain, Ivan Janciakand Peter Brezany (2011).

International Journal of Information System Modeling and Design (pp. 24-48).

www.irma-international.org/article/towards-next-generation-provenance-systems/55487

An Efficient Approach of Vehicle Detection Based on Deep Learning

Algorithms and Wireless Sensors Networks
Cherifa Nakkach, Amira Zrelliand Tahar Ezzdine (2022). International Journal of

Software Innovation (pp. 1-16).

www.irma-international.org/article/an-efficient-approach-of-vehicle-detection-based-on-deep-

learning-algorithms-and-wireless-sensors-networks/309722

Design and Integration of JMF-Based Multimedia-Supported Environment in

a Product Data Management System
Pengfei Zeng (2020). International Journal of Information System Modeling and

Design (pp. 28-51).

www.irma-international.org/article/design-and-integration-of-jmf-based-multimedia-supported-

environment-in-a-product-data-management-system/255111

http://www.igi-global.com/chapter/integrating-patterns-into-case-tools/28106
http://www.igi-global.com/chapter/integrating-patterns-into-case-tools/28106
http://www.igi-global.com/chapter/integrating-patterns-into-case-tools/28106
http://www.irma-international.org/chapter/transformation-of-platform-independent-model-into-platform-specific-model-in-model-driven-architecture/96615
http://www.irma-international.org/chapter/transformation-of-platform-independent-model-into-platform-specific-model-in-model-driven-architecture/96615
http://www.irma-international.org/chapter/software-review-history-overview/26899
http://www.irma-international.org/article/towards-next-generation-provenance-systems/55487
http://www.irma-international.org/article/an-efficient-approach-of-vehicle-detection-based-on-deep-learning-algorithms-and-wireless-sensors-networks/309722
http://www.irma-international.org/article/an-efficient-approach-of-vehicle-detection-based-on-deep-learning-algorithms-and-wireless-sensors-networks/309722
http://www.irma-international.org/article/design-and-integration-of-jmf-based-multimedia-supported-environment-in-a-product-data-management-system/255111
http://www.irma-international.org/article/design-and-integration-of-jmf-based-multimedia-supported-environment-in-a-product-data-management-system/255111

