Chapter 9 The Design of Virtual Laboratories in Microwave Engineering Education

Man Seng Sim https://orcid.org/0000-0001-7776-2239 Universiti Teknologi Malaysia, Malaysia

Kok Yeow You https://orcid.org/0000-0001-5214-7571 Universiti Teknologi Malaysia, Malaysia

Fahmiruddin Esa Universiti Tun Hussein Onn Malaysia, Malaysia

ABSTRACT

The transformation of physical laboratory to virtual laboratory is necessary for distance learning, especially during the pandemic. The educators face challenges when designing and developing virtual laboratories. Therefore, this chapter aimed to present the implementation of virtual laboratories in microwave engineering education, which can be a reference for the educators. The first section introduces microwave, microwave engineering course, and laboratory experiments in the course. The following section reviews and presents the technological tools for the design and development of virtual laboratories. Furthermore, three examples of virtual experiments are discussed based on their design, pedagogical approach, virtual tools, and laboratory manual. The last part discusses the benefits, challenges, and future direction of virtual laboratories in microwave engineering education.

DOI: 10.4018/978-1-7998-6963-4.ch009

INTRODUCTION

Microwave is the region of electromagnetic wave spectrum with frequency ranging from 3 MHz to 300 GHz (Pozar, 2011). The microwave spectrum is designated to different frequency band (Bruder, 2013). Table 1 shows the band letter designations which have been used as a short notation for describing the frequency band of microwave (Radar Systems Electronic Systems Society, 2019). There are different applications for each frequency range. Some specific applications are also allocated for specific frequency. For example, 2.45 GHz is assigned for Industrial, Scientific and Medical (ISM) uses such as microwave ovens, Wi-Fi, and Bluetooth. Microwave technology has become increasingly important in recent years along with the evolving of fifth generation (5G) networks, internet of things (IoT) technology, and modern wireless and sensors technology.

Frequency Band		
Letter Designation	Frequency Range	- Applications
HF	3 MHz to 30 MHz	Amateur radio
VHF	30 MHz to 300 MHz	Amateur radio
UHF	300 MHz to 1000 MHz	Television broadcasting
L	1 GHz to 2 GHz	Global Positioning System (GPS), Mobile phones
S	2 GHz to 4 GHz	Microwave ovens, Wireless LAN, Bluetooth
С	4 GHz to 8 GHz	Long distance radio communications
Х	8 GHz to 12 GHz	Satellite communications
Ku	12 GHz to 18 GHz	Satellite communications
K	18 GHz to 27 GHz	Satellite communications
Ka	27 GHz to 40 GHz	Satellite communications
V	40 GHz to 75 GHz	Millimeter wave radar research
W	75 GHz to 110 GHz	Radar, Remote Sensing
mm	110 GHz to 300 GHz	Radar, Remote Sensing

Table 1. Microwave frequency band and applications

Source: (Radar Systems Electronic Systems Society, 2019)

Microwave Engineering

Microwave engineering (also known as electromagnetic engineering or applied electromagnetic) involves the design of microwave circuits and components (*e.g.* power divider, couplers, circulators, filters), and devices (*e.g.* antennas, waveguides, resonators) (Pozar, 2011). Microwave engineering is different from conventional electronics engineering because it operates at higher frequency (shorter wavelength). Therefore, standard circuit theory based on Kirchhoff's laws and Ohm's law cannot be used to describe the microwave circuit's behaviour. This leads to the difference of circuit analysis techniques and design compared to those circuits at lower frequencies. For microwave circuit or component, analysis on electric and magnetic fields at every point in space based on Maxwell's equations and their solutions are 19 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-global.com/chapter/the-design-of-virtual-laboratories-in-microwaveengineering-education/286004

Related Content

Investigating Students' Perceptions of DingTalk System Features Based on the Technology Acceptance Model

Danhua Peng (2023). International Journal of Technology-Enhanced Education (pp. 1-17). www.irma-international.org/article/investigating-students-perceptions-of-dingtalk-system-features-based-on-thetechnology-acceptance-model/325001

The Impact of Language Use and Academic Integration for International Students: A Comparative Exploration Among Three Universities in the United States and Western Switzerland

Michelle L. Amosand Rachel C. Plews (2019). *International Journal of Technology-Enabled Student Support Services (pp. 1-13).* www.irma-international.org/article/the-impact-of-language-use-and-academic-integration-for-international-

students/244207

Delete, Delete, Hang-Up: On Social Media

(2020). Applying Internet Laws and Regulations to Educational Technology (pp. 51-76). www.irma-international.org/chapter/delete-delete-hang-up/254873

Student Satisfaction Approach for Enhancing University Competitiveness

Booysen Sabeho Tubulinganeand Neeta Baporikar (2020). International Journal of Technology-Enabled Student Support Services (pp. 31-54).

www.irma-international.org/article/student-satisfaction-approach-for-enhancing-university-competitiveness/270262

A Review of Literature on Methods for Teaching and Learning Programming in High Schools

Faridah Hani Mohamed Salleh, Nurul Azlin Liyana Mohamad Redzuanand Noor Saliza Mohd Salleh (2023). *Handbook of Research on Education Institutions, Skills, and Jobs in the Digital Era (pp. 328-340).* www.irma-international.org/chapter/a-review-of-literature-on-methods-for-teaching-and-learning-programming-in-highschools/314272