733

Chapter 38

Logging Analysis and Prediction
in Open Source Java Project

Sangeeta Lal
Jaypee Institute of Information Technology, India

Neetu Sardana
Jaypee Institute of Information Technology, India

Ashish Sureka
Ashoka University, India

ABSTRACT

Log statements present in source code provide important information to the software developers because
they are useful in various software development activities such as debugging, anomaly detection, and
remote issue resolution. Most of the previous studies on logging analysis and prediction provide insights
and results after analyzing only a few code constructs. In this chapter, the authors perform an in-depth,
focused, and large-scale analysis of logging code constructs at two levels: the file level and catch-blocks
level. They answer several research questions related to statistical and content analysis. Statistical and
content analysis reveals the presence of differentiating properties among logged and nonlogged code
constructs. Based on these findings, the authors propose a machine-learning-based model for catch-
blocks logging prediction. The machine-learning-based model is found to be effective in catch-blocks
logging prediction.

INTRODUCTION

Logging is an important software development practice that is used to record important program execu-
tion points in the source code. The recorded log generated from program execution provides important
information to the software developers at the time of debugging. Fu et al. (2014) conducted a survey of
Microsoft developers, asking them their opinion on source code logging. Results of the survey showed
that 96 percent of the developers consider logging statements the primary source of information for prob-

DOI: 10.4018/978-1-7998-9158-1.ch038

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



Logging Analysis and Prediction in Open Source Java Project

lem diagnosis. In many scenarios, logging is the only information available to the software developers
for debugging because the same execution environment is unavailable (which makes bug regeneration
difficult) or the same user input is unavailable (because of security and privacy concerns) (Yuan et al.,
2012). Yuan et al. (2012) showed in their characterization study that the bug reports consisting of log-
ging statements get fixed 2.2 times faster compared to the bug reports not consisting of any logging
statements. Logging statements are not only useful in debugging, but they are also useful in many other
applications, such as anomaly detection (Fu et al., 2009), performance problem diagnosis (Nagaraj et
al., 2012), and workload modeling (Sharma et al., 2011).

Logging statements are important, but they have an inherent cost and benefit tradeoff (Fu et al.,
2014). A large number of logging statements can affect system performance because logging is an
I/O-intensive activity. An experiment by Ding et al. (2015) and Sigelman et al. (2010) reveal that in the
case of search engines, logging can increase average execution time of requests by of 16.3%. Similar to
excess logging, less logging is also problematic. An insufficient number of logging statements can miss
important debugging information and can lessen the benefits of logging. Hence, developers need to avoid
both excessive and insufficient logging. However, previous research and studies show that developers
often face difficulty in optimal logging, that is, identifying which code construct to log in the source
code (Fu et al., 2014; Zhu et al., 2015). It happens because of lack of training and the domain experi-
ence required for optimal logging. For example, Shang et al. (2015) reported an incident of a user from
a Hadoop project complaining about less logging of catch-blocks. Recently the software engineering
research community has conducted studies to understand the logging practices of software developers in
order to build tools and techniques to help with automated logging. The current studies provide limited
characterization study or conduct analysis on fewer code constructs. There are gaps in previous studies,
as they do not analyze all the code constructs in detail, which this study aims to fill.

The work presented in this chapter is the first large-scale, in-depth, and focused study of logged and
nonlogged code constructs at multiple levels. High-level (source code files) and low-level (catch-blocks)
analysis were conducted to identify relationships between code constructs and logging characteristics.
Based on the finding of this multilevel analysis authors proposed a machine leanirng based model for
log statement prediction for catch-blocks. . A case study was performed on three large, open-source Java
projects: Apache Tomcat (Apache Tomcat, n.d.), CloudStack (Apache CloudStack, n.d.), and Hadoop
(Page, n.d.). Empirical analysis reveals several interesting insights about logged and nonlogged code
constructs at both the levels. The machine learning based model give encouraging results for catch-blocks
logging prediction on Java projects.

RELATED WORK

This section presents the closely related work and the novel research contributions of the study presented
in this chapter in context to existing work. The authors categorize the related work in three dimensions:
1) improving source code logging, 2) uses of logging statements in other applications, and 3) applica-
tions of LDA in topic identification.

734



27 more pages are available in the full version of this document, which may
be purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/logging-analysis-and-prediction-in-open-source-
java-project/286602

Related Content

Analyzing OSS Project Health with Heterogeneous Data Sources

Wikan Danar Sunindyo, Thomas Moser, Dietmar Winklerand Stefan Biffl (2011). International Journal of
Open Source Software and Processes (pp. 1-23).
www.irma-international.org/article/analyzing-oss-project-health-heterogeneous/68151

A Framework for Understanding the Open Source Revolution
Jeff Elpernand Sergiu Dascalu (2009). International Journal of Open Source Software and Processes (pp.
1-16).

www.irma-international.org/article/framework-understanding-open-source-revolution/38902

Trust in Open Source Software Development Communities: A Comprehensive Analysis
Amitpal Singh Sohal, Sunil Kumar Guptaand Hardeep Singh (2018). International Journal of Open Source
Software and Processes (pp. 1-19).

www.irma-international.org/article/trust-in-open-source-software-development-communities/221361

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector
Gabor Laszlo (2007). Handbook of Research on Open Source Software: Technological, Economic, and
Social Perspectives (pp. 445-459).
www.irma-international.org/chapter/issues-aspects-open-source-software/21207

Selecting Open Source Software for Use in Schools

Kathryn Moyle (2007). Handbook of Research on Open Source Software: Technological, Economic, and
Social Perspectives (pp. 624-637).
www.irma-international.org/chapter/selecting-open-source-software-use/21221



http://www.igi-global.com/chapter/logging-analysis-and-prediction-in-open-source-java-project/286602
http://www.igi-global.com/chapter/logging-analysis-and-prediction-in-open-source-java-project/286602
http://www.irma-international.org/article/analyzing-oss-project-health-heterogeneous/68151
http://www.irma-international.org/article/framework-understanding-open-source-revolution/38902
http://www.irma-international.org/article/trust-in-open-source-software-development-communities/221361
http://www.irma-international.org/chapter/issues-aspects-open-source-software/21207
http://www.irma-international.org/chapter/selecting-open-source-software-use/21221

