
762

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 39

DOI: 10.4018/978-1-7998-9158-1.ch039

ABSTRACT

Software evolution control mostly relies on the better structure of the inherent software artifacts and the
evaluation of different qualitative factors like maintainability. The attributes of changeability are com-
monly used to measure the capability of the software to change with minimal side effects. This article
describes the use of the design of experiments method to evaluate the influence of variations of software
metrics on the change impact in developed software. The coupling metrics are considered to analyze
their degree of contribution to cause a change impact. The data from participant software metrics are
expressed in the form of mathematical models. These models are then validated on different versions of
software to estimate the correlation of coupling metrics with the change impact. The proposed approach
is evaluated with the help of a set of experiences which are conducted using statistical analysis tools. It
may serve as a measurement tool to qualify the significant indicators that can be included in a Software
Maintenance dashboard.

Using Design of Experiments
to Analyze Open Source

Software Metrics for Change
Impact Estimation

Miloud Dahane
 https://orcid.org/0000-0002-1754-6005

Université Oran1, Oran, Algeria

Mustapha Kamel Abdi
Université Oran1, Oran, Algeria

Mourad Bouneffa
Université du Littoral Côte d’Opale, Dunkirk,

France

Adeel Ahmad
Laboratoire d’Informatique Signal et Image de la

Côte d’Opale, Calais, France

Henri Basson
Université du Littoral Côte d’Opale, Dunkirk, France

763

Using Design of Experiments to Analyze Open Source Software Metrics for Change Impact Estimation
﻿

1. INTRODUCTION

The software maintenance or evolution is an essential step in the software life cycle. Several works
have, for many years, highlighted the importance of maintenance and/or evolution of the software and
have established several taxonomies (Gasmallah et al., 2016). The oldest have allowed to consider three
kinds of maintenance (Swanson, 1976): corrective maintenance leading to remove the residual errors or
faults; adaptive maintenance that consists of adapting the software to changes affecting both its techni-
cal or managerial environments like the evolution of the deployment infrastructures or the change of
some regulation policies, etc. The perfective maintenance includes changes intended to improve the
software by introducing new features or improving some quality criteria, etc. In (Chapin, 2000), the
author introduces a new maintenance type called preventive maintenance as the changes leading to make
the software more able to evolve and then to change. In other words, the changes induced by this last
kind of maintenance makes it possible to improve the maintainability criterion of the software without
affecting the functionalities or performance of such a software.

In this work, we do not intentionally make any difference between maintenance and evolution, although
these two concepts have been subjects to numerous comparisons. Maintenance is often seen as an engineer-
ing process in which academic research has delineated and characterized the stages, the activities to be
carried out, the actors and resources to be implemented, etc. In other words, the concept of maintenance
is the result of a kind of morphism between the industrial world and the software development activity.
The term software evolution is the result of works (Lehman & Ramil, 2002.) aimed at understanding
the phenomenon of change affecting the software artifacts. For example, Lehmann’s laws of evolution
attempt to explain how the software evolves during many years until becoming obsolete. These laws are
the result of empirical studies conducted over several years on software used on the real world. In the
same way, Benett and Rajlich drew up (Benett & Rajlich, 2000) a software life cycle designed not as a
means to develop the software but as an explanation of how software is produced, evolved, maintained,
and eventually removed from the information system.

As far as we are concerned, we indifferently use the terms maintenance or evolution. What we are
particularly interested in, is the notion of the software change and more specifically the Change Impact
Analysis (Abdi et al., 2009; Sun et al., 2012). It is clear that one of the major concerns of the software
development stakeholders is to best control the change process and then the software maintenance/evo-
lution one. In fact, an uncontrolled change can quickly lead to a slippage in terms of project’s cost and
time. During more than four decades, many works have addressed this problem making the maintenance
the most important cost factor of all the software development process (Folmer & Bosch, 2008; Gupta et
al., 2008). In addition, according to ISO 250010 Model (ISO, 2011) (José et al., 2014), maintainability
or scalability is one of the main components of the software quality.

In this work, we are interested in estimating the impact of the software change but from a quantita-
tive point of view. In other words, we try to produce a model based on mathematical equations allowing
us to estimate, in a way, the cost of the change of a given software. It reflects the impact of change in
terms of the lines of code to be further modified, as an effort required to adapt the change. Indeed, a
modification in a software development results in changes made in the source code in order to improve
or correct its operation. These changes include any change affecting any element of the software (vari-
able, method, or class). This can be, for example, deleting a variable, changing the scope of a method,
or moving the link between a class and its super class, etc. A change can have dramatic and unexpected
effects on the rest of the system. The danger of modifying a software element consists of the occurring

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/using-design-of-experiments-to-analyze-open-

source-software-metrics-for-change-impact-estimation/286603

Related Content

Legal and Economic Justification for Software Protection
Bruno de Vuystand Alea Fairchild (2012). International Journal of Open Source Software and Processes

(pp. 1-12).

www.irma-international.org/article/legal-and-economic-justification-for-software-protection/101202

Types of Computer Corpora
 (2020). Computer Corpora and Open Source Software for Language Learning: Emerging Research and

Opportunities (pp. 1-21).

www.irma-international.org/chapter/types-of-computer-corpora/256697

Open Source Technology and Ideology in the Nonprofi t Context
Jonathan Peizer (2007). Handbook of Research on Open Source Software: Technological, Economic, and

Social Perspectives (pp. 468-479).

www.irma-international.org/chapter/open-source-technology-ideology-nonprofi/21209

An Exploratory Investigation of the Barriers to the Adoption of Open Source ERP by Belgian

SMEs
Kris Venand Dieter Van Nuffel (2012). Free and Open Source Enterprise Resource Planning: Systems and

Strategies (pp. 145-164).

www.irma-international.org/chapter/exploratory-investigation-barriers-adoption-open/60824

Strategies for Improving Open Source Software Usability: An Exploratory Learning Framework

and a Web-based Inspection Tool
Luyin Zhao, Fadi P. Deekand James A. McHugh (2009). International Journal of Open Source Software

and Processes (pp. 49-64).

www.irma-international.org/article/strategies-improving-open-source-software/41948

http://www.igi-global.com/chapter/using-design-of-experiments-to-analyze-open-source-software-metrics-for-change-impact-estimation/286603
http://www.igi-global.com/chapter/using-design-of-experiments-to-analyze-open-source-software-metrics-for-change-impact-estimation/286603
http://www.irma-international.org/article/legal-and-economic-justification-for-software-protection/101202
http://www.irma-international.org/chapter/types-of-computer-corpora/256697
http://www.irma-international.org/chapter/open-source-technology-ideology-nonprofi/21209
http://www.irma-international.org/chapter/exploratory-investigation-barriers-adoption-open/60824
http://www.irma-international.org/article/strategies-improving-open-source-software/41948

