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abstract

Fractal geometry can help us to describe the 
shapes in nature (e.g., ferns, trees, seashells, riv-
ers, mountains) exceeding the limits imposed by 
Euclidean geometry. Fractal geometry is quite 
young: The first studies are the works by the French 
mathematicians Pierre Fatou (1878-1929) and 
Gaston Julia (1893-1978) at the beginning of the 
20th century. However, only with the mathemati-
cal power of computers has it become possible to 
realize connections between fractal geometry and 
other disciplines. It is applied in various fields now, 
from biology to economy. Important applications 
also appear in computer science because fractal 
geometry permits us to compress images, and to 
reproduce, in virtual reality environments, the 
complex patterns and irregular forms present in 
nature using simple iterative algorithms executed 
by computers. Recent studies apply this geometry 
to controlling traffic in computer networks (LANs, 
MANs, WANs, and the Internet). The aim of this 
chapter is to present fractal geometry, its proper-

ties (e.g., self-similarity), and their applications 
in computer science.

IntroductIon

Fractal geometry is a recent discovery. It is also 
known as Mandelbrot’s geometry in honor of its 
father, the Polish-born Franco-American math-
ematician Benoit Mandelbrot, who showed how 
fractals can occur in many different places in both 
mathematics and elsewhere in nature.

Fractal geometry is now recognized as the true 
geometry of nature. Before Mandelbrot, mathema-
ticians believed that most of the patterns of nature 
were far too irregular, complex, and fragmented 
to be described mathematically. Mandelbrot’s 
geometry replaces Euclidian geometry, which 
had dominated our mathematical thinking for 
thousands of years.

The Britannica Concise Encyclopedia (“Frac-
tal Geometry,” 2007) introduces fractal geometry 
as follows:
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In mathematics, the study of complex shapes with 
the property of self-similarity, known as fractals. 
Rather like holograms that store the entire image 
in each part of the image, any part of a fractal can 
be	repeatedly	magnified,	with	each	magnification	
resembling all or part of the original fractal. This 
phenomenon	can	be	seen	in	objects	like	snowflakes	
and tree bark….This new system of geometry has 
had	a	significant	 impact	on	such	diverse	fields	
as	physical	chemistry,	physiology,	and	fluid	me-
chanics; fractals can describe irregularly shaped 
objects or spatially nonuniform phenomena that 
cannot be described by Euclidean geometry.”

The multiplicity of the application fields had 
a central role in the diffusion of fractal geometry 
(Barnsley, Saupe, & Vrscay, 2002; Eglash, 1999; 
Mandelbrot, 1982; Nonnenmacher, Losa, Merlini, 
& Weibel, 1994; Sala, 2004, 2006; Vyzantiadou, 
Avdelas, & Zafiropoulos, 2007).

background: what Is a 
fractal?

A fractal could be defined as a rough or fragmented 
geometric shape that can be subdivided in parts, 
each of which is approximately a reduced-size 
copy of the whole (Mandelbrot, 1988). Fractal is 
a term coined by Benoit Mandelbrot (born 1924) 
to denote the geometry of nature, which traces 
inherent order in chaotic shapes and processes. 
The term derived from the Latin verb frangere, 
to break, and from the related adjective fractus, 
fragmented and irregular. This term was created 
to differentiate pure geometric figures from other 
types of figures that defy such simple classifica-
tion. The acceptance of the word fractal was dated 
in 1975. When Mandelbrot presented the list of 
publications between 1951 and 1975, the date when 
the French version of his book was published, 
people were surprised by the variety of the studied 
fields: linguistics, cosmology, economy, games 
theory, turbulence, and noise on telephone lines 

(Mandelbrot, 1975). Fractals are generally self-
similar on multiple scales. So, all fractals have a 
built-in form of iteration or recursion. Sometimes 
the recursion is visible in how the fractal is con-
structed. For example, Koch’s snowflake, Cantor’s 
set, and Sierpinski’s triangle are generated using 
simple recursive rules. Self-similarity, iterated 
function systems, and the Lindenmayer System 
are applied in different fields of computer science 
(e.g., in computer graphics, virtual reality, and 
traffic control for computer networks).

self-similarity

Self-similarity, or invariance against changes in 
scale or size, is a property by which an object 
contains smaller copies of itself at arbitrary scales. 
Mandelbrot (1982, p. 34) defined self-similarity 
as follows: “When each piece of a shape is geo-
metrically similar to the whole, both the shape 
and the cascade that generate it are called self-
similar.”

A fractal object is self-similar if it has under-
gone a transformation whereby the dimensions 
of the structure were all modified by the same 
scaling factor. The new shape may be smaller, 
larger, translated, and/or rotated. Similar means 
that the relative proportions of the shapes’ sides 
and internal angles remain the same. As described 
by Mandelbrot (1982), this property is ubiquitous 
in the natural world. Oppenheimer (1986) used 
the term fractal, exchanging it with self-similar-
ity, and he affirmed that the geometric notion 
of self-similarity is evolving in a paradigm for 
modeling the natural world, in particular in the 
world of botany. 

Self-similarity appears in objects as diverse 
as leaves, mountain ranges, clouds, and galaxies. 
Figure 1a shows a snowflake that is an example 
of self-similarity in nature. Figure 1b illustrates 
Koch’s snowflake; it is built starting from an 
equilateral triangle, removing the inner third of 
each side, building another equilateral triangle 
at the location where the side was removed, and 
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