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ABSTRACT

Surrogate models, capable of emulating the robust first principle based models, facilitate the online 
implementation of computationally expensive industrial process optimization. However, the heuristic 
estimation of parameters governing the surrogate building often renders them erroneous or under-
trained. Current work aims at presenting a novel parameter free surrogate building approach, specifi-
cally focusing on Artificial Neural Networks. The proposed algorithm implements Sobol sampling plan 
and intelligently designs the configuration of network with simultaneous estimation of optimal transfer 
function and training sample size to prevent overfitting and enabling maximum prediction accuracy. A 
novel Sample Size Determination algorithm based on a potential concept of hypercube sampling tech-
nique adds to the speed of surrogate building algorithm, thereby assuring faster convergence. Surrogates 
models for a highly nonlinear industrial sintering process constructed using the novel algorithm resulted 
in 7 times faster optimization.

INTRODUCTION

Optimization techniques are frequently applied in chemical process and manufacturing industries, busi-
ness, economics, health-care, finance and energy management (Ries, Beullens & Wang, 2012; Vasant, 
2014; Dostal, 2014; Yuce & Mastrocinque, 2016; Lechuga, Martinez & Ramirez, 2016; Vasant, 2011; 
Pombo, Garcia, Bousson, & Felizardo 2017). Although the advent of high performance computers has 
empowered the industries by tremendously increasing the speed of processing, control and optimization 
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of industrial problems still remain to be computationally intensive (Mitra, Majumdar & Raha, 2004). 
The genesis of large computational times lies with the simulation of complex first principle based model 
for generating the candidates for optimization (Miriyala, Mittal, Majumdar & Mitra, 2016). The first 
principle based models, such as, those trying to capture the dynamics of reaction networks in a polymer 
industry or a model handling the wake effects or turbulence in fluid flow, etc. usually involve several 
highly nonlinear coupled Ordinary and Partial Differential Equations (ODEs & PDEs) (Khan, Hussain, 
Mansourpour, Mostoufi, Ghasem & Abdullah, 2014; Yousefi & Karimi, 2013; Mogilicharla, Chugh, 
Majumdar, & Mitra, 2014). This necessitates the involvement of robust simulation packages, such as, 
ASPEN, Computational Fluid Dynamics (CFD), or Differential Algebraic solvers etc., to solve the system 
of ODEs and PDEs to facilitate their implementation at industrial scale (Azargoshasb, Mousavi, Amani, 
Jafari, & Nosrati, 2015; Douguet 2010; Espinet, Shoemaker & Doughty, 2013; Jin & Sendhoff, 2009). 
The intrinsic complexity of these models forms the genesis for the large computational time consumed 
by the optimizer, compelling the entire process to run over several weeks or even months (Mogilicharla, 
Mittal, Majumdar, & Mitra, 2014). The problem grows by multiple folds when the considered system 
is multi-dimensional in nature (say m dimensions) with optimization formulation involving multiple 
conflicting objective functions instead of one (Miriyala et al., 2016). The conflicting nature of the objec-
tive functions results in a set of non-dominating solutions called Pareto Optimal (PO) solutions (Deb, 
Sindhya & Hakanen, 2016). The selection of single solution from the PO set is through some higher order 
information, often provided by the decision maker (Deb, 2001). The solution obtained in this way aims 
at enabling a decision support system to program and simulate the given process in an optimum fashion. 
This concept of online optimization is practically imbibed in industry when the combined functioning 
of optimizer and controller is realized in real time of the live process.

The tremendous industrial growth and ever-expanding demand over the last decade have created strong 
need for the solutions, which could cater multiple objectives at the same time. This requires solving the 
underlying multi-objective optimization problem (MOOP) (Deb, Agrawal, Pratap & Meyarivan, 2000). 
Until date, owing to the advent of fast computing machines, the ability of modern evolutionary methods 
for solving the MOOP has remained unparalleled (Deb, 2002). On the other hand, due to the predominant 
condition, wherein absence or expensive computation of gradient information of the complex models has 
become a common scenario, the modern evolutionary optimization techniques have gained enormous 
prominence over their classical counterparts, which provide every future course of movements depend-
ing on the current gradient information (Deb, 2001). The procedure of solving the MOOP by the robust 
evolutionary techniques, which primarily work with population of candidate solutions, necessitates 
multiple function evaluations in order to generate those solutions required in optimization process (Nain 
& Deb, 2002). These aspects together make the concept of online optimization a far-fetched impractical 
concept confined to theory, which cannot be realized practically unless the optimization happens in real 
time (Miriyala et al. 2016). The key to this problem lies with fast and accurate surrogate models, which 
essentially are data based models trying to emulate the given complex first principle or physics based 
models (Jin 2011; Tabatabaei, Hakanen, Hartikainen, Miettinen, & Sindhya, 2015; Assefi, Ghaedi, 
Ansari, Habibi, & Momeni, 2014). These surrogates then replace the original physics based models in 
the optimization algorithm thereby shielding them from the optimizer while generating the candidate 
solutions. With surrogates in place, the entire optimization algorithm may proceed in a fast manner thus 
enabling a step towards online optimization (Miryala, Pantula, Majumdar & Mitra, 2016).

However, the surrogate building approaches in general contain certain parameters such as the optimal 
number of training sample points, which needs to be estimated a priori. The existing methodologies (as 
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