152

Chapter 1.15
Automated Software Testing

Paula Donegan
Instituto Atlantico, Brazil

Liane Bandeira
Instituto Atlantico, Brazil

Cristina Matos
Instituto Atlantico, Brazil

Paula Luciana da Cunha
Instituto Atlantico, Brazil

Camila Maia
Instituto Atlantico, Brazil

ABSTRACT

This chapter approaches paramount aspects re-
lated to test automation, introducing the impor-
tance of implementation in the software market
and essential bases, such as adjustment to the
organizational reality and establishment of an
efficient strategy. Types of tools and directives
for a successful implantation are presented. Test
automation has been considered the main measure
taken to enhance test efficiency — fundamental
inthe software-development process. Responsible
for verifying and/or validating the quality of the
executable product compared to performed docu-
mentation and client requirements. Therefore,
with the chapter content here provided, we aim

to provide the reader with an understanding of
test automation and grant relevant orientations to
assist implementing it.

INTRODUCTION

Given the growing complexity of applications
and new technologies, such as the advent of the
client/server environment (in particular Web ap-
plications), the effort necessary for application
testing has increased.

To assure that software conforms to require-
ments, various test stages may be identified: unit,
integration, system, and acceptance. Bugs’ impact
increases with the evolution of the test stage in

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.



Automated Software Testing

which they are found, in other words, the cost
of detecting errors during unit test is less than
integration and system tests.

Each use case has test objects that may need
to be retested several times during the project,
demanding resources. These retests normally
are required when a new functionality is added
or when a bug is corrected, because there is no
guarantee that the changes made will impact
negatively on other parts already constructed.
Therefore, the assistance of a tool capable of
repeating a test already executed in the past is
quite interesting.

Besides, multiple execution paths and diversity
of possible inputs and outputs of an application
complicate the execution of manual tests, which
may be simplified by automation. In addition, per-
formance, load and volume tests are examples of
tests that are difficult to be accomplished without
the help of automated testing tools. There are also
some types of tests that are almost impossible
to be executed manually, for example, a test to
verify a system’s performance with thousands or
millions of simultaneous accesses or having to
use an enormous amount of data.

Automating software tests speeds development
and reduces retesting effort spent in each stage,
thus reducing time and cost. However, this reduc-
tionisnormally noticed only aftera while, because
there are high investments in the implantation
stage, such as organizational needs, training, and
tools acquisition. Automation allows increase of
amplitude and depth of developed tests.

Testing automation might or might not be
helpful. It allows one to take advantage of idle
machine time (i.e., the period in which the devel-
oper is not working) to execute tests. Therefore,
test execution can be more effective and waste
less resources.

BACKGROUND

Automated software testing is an activity that
seems to have obvious benefits: tests may be ex-
ecuted swiftly, are more consistent, and may be
repeated various times without increasing cost.
However, it is not a trivial activity and requires
effective planning and elaborate test-case defini-
tion, as well as other characteristics, which will
be explained in more detail later in this chapter.
Benefits and risks, possible tools, an implantation
methodology and directives for script generation
are also described.

An automated test between different phases
of the development process has the purpose of
verifying if what was constructed from that
stage backwards is correct and is adequate as an
input for the next stage. An example would be a
programmer testing a software component before
doing the integration of components.

The generated test process is automated and
capable of ensuring that the system logically
operates according to the code by executing the
functions through a series of test cases.

With a tool, you can expect the test script to
conduct the verification processes and return
results that verify whether the product under test
meets code logic.

A test engineer usually follows a procedure
to decide whether a problem found is a defect.
However, an automated test tool makes decisions
based on methods invocation, during which it
detects errors and defects. Thus, the tool makes an
effort to remind the developers of the importance
of adopting a good error-handling technique.

But, can a tool verify that all test tasks have
been performed? The answer is based on the
requirements of your organization and on the
architecture of the software project (Li & Wu,
2004).

153



18 more pages are available in the full version of this document, which may
be purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/automated-software-testing/29387

Related Content

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

Martin Michlmayr, Gregorio Roblesand Jesus M. Gonzalez-Barahona (2009). Software Applications:
Concepts, Methodologies, Tools, and Applications (pp. 1865-1882).
www.irma-international.org/chapter/volunteers-large-libre-software-projects/29483

Combining Model Inference and Passive Testing in the Same Framework to Test Industrial
Systems

Sebastien Salvaand William Durand (2017). International Journal of Information System Modeling and
Design (pp. 43-72).
www.irma-international.org/article/combining-model-inference-and-passive-testing-in-the-same-framework-to-test-

industrial-systems/197432

RDF Model Generation for Unstructured Dengue Patients' Clinical and Pathological Data
Runumi Devi, Deepti Mehrotraand Hajer Baazaoui-Zghal (2019). International Journal of Information
System Modeling and Design (pp. 71-89).
www.irma-international.org/article/rdf-model-generation-for-unstructured-dengue-patients-clinical-and-pathological-
data/243440

Secure Digital Data Communication Based on Fractional-Order Chaotic Maps

Hamid Hamiche, Sarah Kassim, Ouerdia Megherbi, Said Djennouneand Maamar Bettayeb (2018).
Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems (pp. 438-467).
www.irma-international.org/chapter/secure-digital-data-communication-based-on-fractional-order-chaotic-maps/204808

Context Inference Engine (CiE): Classifying Activity of Context using Minkowski Distance and
Standard Deviation-Based Ranks

Umar Mahmudand Muhammad Younus Javed (2014). Systems and Software Development, Modeling, and
Analysis: New Perspectives and Methodologies (pp. 65-112).
www.irma-international.org/chapter/context-inference-engine-cie/108811



http://www.igi-global.com/chapter/automated-software-testing/29387
http://www.irma-international.org/chapter/volunteers-large-libre-software-projects/29483
http://www.irma-international.org/article/combining-model-inference-and-passive-testing-in-the-same-framework-to-test-industrial-systems/197432
http://www.irma-international.org/article/combining-model-inference-and-passive-testing-in-the-same-framework-to-test-industrial-systems/197432
http://www.irma-international.org/article/rdf-model-generation-for-unstructured-dengue-patients-clinical-and-pathological-data/243440
http://www.irma-international.org/article/rdf-model-generation-for-unstructured-dengue-patients-clinical-and-pathological-data/243440
http://www.irma-international.org/chapter/secure-digital-data-communication-based-on-fractional-order-chaotic-maps/204808
http://www.irma-international.org/chapter/context-inference-engine-cie/108811

