
 495

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.34
Mining Software Specifications

David Lo
National University of Singapore, Singapore

Siau-Cheng Khoo
National University of Singapore, Singapore

INTRODUCTION

Software is a ubiquitous component in our daily
life. It ranges from large software systems like
operating systems to small embedded systems like
vending machines, both of which we frequently
interact with. Reducing software related costs and
ensuring correctness and dependability of soft-
ware are certainly worthwhile goals to pursue.

Due to the short-time-to-market requirement
imposed on many software projects, documented
software specifications are often lacking, incom-
plete and outdated (Deelstra, Sinnema & Bosch
2004). Lack of documented software specifica-
tions contributes to difficulties in understanding
existing systems. The latter is termed program
comprehension and is estimated to contribute
up to 45% of total software cost which goes to
billions of dollars (Erlikh 2000, Standish 1984;
Canfora & Cimitile 2002; BEA 2007). Lack of
specifications also hampers automated effort of

program verification and testing (Ammons, Bodik
& Larus 2002).

One solution to address the above problems
is mining (or automatic extraction of) software
specification from program execution traces.
Given a set of program traces, candidate partial
specifications pertaining to the behavior a piece
of software obeys can be mined.

In this chapter, we will describe recent stud-
ies on mining software specifications. Software
specification mining has been one of the new
directions in data mining (Lo, Khoo & Liu 2007a,
Lo & Khoo 2007). Existing specification mining
techniques can be categorized based on the form
of specifications they mine. We will categorize
and describe specification mining algorithms for
mining five different target formalisms: Boolean
expressions, automata (Hopcroft, Motwani &
Ullman 2001), Linear Temporal Logic (Huth &
Ryan 2003), frequent patterns (Han & Kamber
2006) and Live Sequence Charts (Harel & Marelly
2003).

496

Mining Software Specifications

BACKGROUND

Different from many other engineering prod-
ucts, software changes often during its lifespan
(Lehman & Belady 1985). The process of mak-
ing changes to a piece of software e.g., to fix
bugs, to add features, etc., is known as software
maintenance. During maintenance, there is a
need to understand the current version of the
software to be changed. This process is termed
as program comprehension. Program comprehen-
sion is estimated to take up to 50% of software
maintenance efforts which in turn is estimated
to contribute up to 90% of total software costs
(Erlikh 2000, Standish 1984; Canfora & Cimitile
2002). Considering the $216.0 billion of software
component contribution to the US GDP at second
quarter 2007, the cost associated with program
comprehension potentially goes up to billions of
dollars (BEA 2007). One of the root causes of
this problem is the fact that documented soft-
ware specification is often missing, incomplete
or outdated (Deelstra, Sinnema & Bosch 2004).
Mining software specifications is a promising
solution to reduce software costs by reducing
program comprehension efforts.

On another angle, software dependability is
a well sought after goal. Ensuring software runs
correctly at all times and identifying bugs are
two major activities pertaining to dependability.
Dependability is certainly an important issue
as incorrect software has caused the loss of bil-
lions of dollars and even the loss of lives (NIST
2002; ESA & CNES 1996; GAO 1992). There are
existing tools for performing program verifica-
tion. These tools take formal specifications and
automatically check them against programs to
discover inconsistencies, identify bugs or ensure
that all possible paths in the program satisfy the
specification (Clarke, Grumberg & Peled 1999).
However, programmers’ reluctance and difficulty
in writing formal specifications have been some
of the barriers to the widespread adoption of such
tools in the industry (Ammons, Bodik & Larus

2002, Holtzmann 2002). Mining software speci-
fications can help to improve software depend-
ability by providing these formal specifications
automatically to these tools.

MAIN FOCUS

There are a number of specification mining
algorithms available. These algorithms can be
categorized into families based on the target
specification formalisms they mine. These include
specification miners that mine Boolean expres-
sions (Ernst, Cockrell, Griswold and Notkin
2001), automata (Cook & Wolf 1998; Reiss &
Reinieris, 2001; Ammons, Bodik & Larus 2002;
Lo & Khoo 2006a; Lo & Khoo 2006b; Mariani,
Papagiannakis and Pezzè 2007; Archaya, Xie,
Pei & Xu, 2007; etc.), Linear Temporal Logic
expressions (Yang, et al. 2006; Lo, Khoo & Liu
2007b; Lo, Khoo & Liu 2008, etc.), frequent
patterns (Li & Zhou, 2005; El-Ramly, Stroulia
& Sorenson, 2002; Lo, Khoo & Liu 2007a; etc.)
and Live Sequence Charts (Lo, Maoz & Khoo
2007a, Lo, Maoz & Khoo 2007b).

These mined specifications can aid program-
mers in understanding existing software systems.
Also, a mined specification can be converted to
run-time tests (Mariani, Papagiannakis & Pezzè
2007; Lo, Maoz & Khoo 2007a; Lo, Maoz &
Khoo 2007b) or input as properties-to-verify to
standard program verification tools (Yang, Evans,
Bhardwaj, Bhat and Das, 2006; Lo, Khoo & Liu
2007b).

Preliminaries

Before proceeding further, let us describe some
preliminaries. Specifications can be mined from
either traces or code. A program trace is a sequence
of events. Each event in a trace can correspond
to a statement being executed, or a method be-
ing called, etc. In many work, an event is simply
the signature of a method that is being called.

7 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/mining-software-specifications/29406

Related Content

Web Services Description and Discovery for Mobile Crowdsensing: Survey and Future

Guidelines
Salma Bradai, Sofien Khemakhemand Mohamed Jmaiel (2016). International Journal of Information

System Modeling and Design (pp. 31-49).

www.irma-international.org/article/web-services-description-and-discovery-for-mobile-crowdsensing/178563

Energy Efficient Level by Level Scheduling for Multiple Workflows in Cloud
Ritu Gargand Neha Shukla (2019). International Journal of Software Innovation (pp. 102-117).

www.irma-international.org/article/energy-efficient-level-by-level-scheduling-for-multiple-workflows-in-cloud/230926

Model-Driven Testing with Test Sheets
Michael Felderer, Colin Atkinson, Florian Barthand Ruth Breu (2012). Emerging Technologies for the

Evolution and Maintenance of Software Models (pp. 231-253).

www.irma-international.org/chapter/model-driven-testing-test-sheets/60723

Fuzzy Control-Based Synchronization of Fractional-Order Chaotic Systems With Input

Nonlinearities
Abdesselem Boulkrouneand Amina Boubellouta (2018). Advanced Synchronization Control and Bifurcation

of Chaotic Fractional-Order Systems (pp. 261-288).

www.irma-international.org/chapter/fuzzy-control-based-synchronization-of-fractional-order-chaotic-systems-with-input-

nonlinearities/204803

Constructivist Learning During Software Development
Václav Rajlichand Shaochun Xu (2009). Software Applications: Concepts, Methodologies, Tools, and

Applications (pp. 910-922).

www.irma-international.org/chapter/constructivist-learning-during-software-development/29427

http://www.igi-global.com/chapter/mining-software-specifications/29406
http://www.irma-international.org/article/web-services-description-and-discovery-for-mobile-crowdsensing/178563
http://www.irma-international.org/article/energy-efficient-level-by-level-scheduling-for-multiple-workflows-in-cloud/230926
http://www.irma-international.org/chapter/model-driven-testing-test-sheets/60723
http://www.irma-international.org/chapter/fuzzy-control-based-synchronization-of-fractional-order-chaotic-systems-with-input-nonlinearities/204803
http://www.irma-international.org/chapter/fuzzy-control-based-synchronization-of-fractional-order-chaotic-systems-with-input-nonlinearities/204803
http://www.irma-international.org/chapter/constructivist-learning-during-software-development/29427

