
 635

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.7
Formal Modeling and

Specification of Design
Patterns Using RTPA

Yingxu Wang
University of Calgary, Canada

Jian Huang
University of Calgary, Canada

AbstrAct

Software patterns are recognized as an ideal
documentation of expert knowledge in software
design and development. However, its formal
model and semantics have not been generalized
and matured. The traditional UML specifications
and related formalization efforts cannot capture
the essence of generic patterns precisely, under-
standably, and essentially. A generic mathematical
model of patterns is presented in this article using
real-time process algebra (RTPA). The formal
model of patterns are more readable and highly
generic, which can be used as the meta model to
denote any design patterns deductively, and can be
translated into code in programming languages by
supporting tools. This work reveals that a pattern
is a highly complicated and dynamic structure

for software design encapsulation, because of its
complex and flexible internal associations between
multiple abstract classes and instantiations. The
generic model of patterns is not only applicable to
existing patterns’ description and comprehension,
but also useful for future patterns’ identification
and formalization.

IntroductIon

Design patterns are a powerful tool for captur-
ing software design notions and best practices,
which provide common solutions to core problems
in software development. Design patterns are a
promising technique that extends reusability of
software from code to design notions. A repre-
sentative work of design patterns is initiated by

636

Formal Modeling and Specification of Design Patterns Using RTPA

Gamma and his colleagues in Design Patterns:
Elements of Reusable Object-Oriented Software in
1994 (Gamma, Helm, Johnson, & Vlissides, 1995).
Design patterns may speed up the development
process by providing tested and proven develop-
ment paradigms. Reusing design patterns helps
to prevent subtle issues in large-scale software
development and improves code readability for
architects and programmers. Design patterns can
contribute to the definition, design, and documen-
tation of class libraries and frameworks, offering
elegant and reusable solutions to design problems,
and consequently increasing productivity and
development quality (Gamma et al., 1995; Wang,
2007a). Each design pattern lets some aspects of
the system structure vary independently of other
aspects, thereby making the system more robust
to a particular kind of change.

Design patterns are used to be modeled and
specified in natural language narratives, object-
oriented programming languages, and UML
diagrams. The traditional means are either inher-
ently ambiguous or inadequate (Lano, Goldsack,
& Bicarregui, 1996; Vu & Wang, 2004; Wang
& Huang, 2005). The major problems in cur-
rent methodologies for pattern specification are
identified as follows:

• The lack of a unified and generic architec-
ture of patterns as a multilayered complex
entity with a set of abstract and concrete
classes and their interrelations: Patterns
have been classified in three categories
known as the creational, structural, and
behavioral patterns (Gamma et al., 1995).
However, the theories for the nature of pat-
terns and their generic architecture are yet
to be sought.

• The lack of abstraction: Almost all pat-
terns are described as a specific and concrete
case in natural language, UML diagrams,
or some formal notations. However, no
generic mathematical model of patterns is
rigorously established, which may form a

deductive basis for deriving concrete and
application-specific patterns.

• The lack of uniqueness: In the conventional
pattern framework, there are different pat-
terns that may be implemented by similar
code; Reversely, the same pattern may be
implemented in various ways.

• The use of unstructured semantic means
to denote highly complicated design
knowledge in patterns: The informal de-
scriptions of patterns puzzle users and cause
substantial confusions. Even the creators of
patterns demonstrate inconsistent over the
semantics of certain patterns.

The authors perceive that the above funda-
mental problems can be alleviated by introducing
formal semantics for design patterns and their
generic mathematical models (Wang, 2002, 2003,
2006a-c, 2007a-c). This approach allows for un-
ambiguous specifications, enables reasoning about
the relationships between abstract and concrete
patterns, and promotes a coherent framework for
the rapidly growing body of software patterns in
software engineering (Beck, Coplien, Crocker, &
Dominick, 1996; Bosch, 1996; Wang, 2002, 2006a,
2007a). This article presents a generic model of
design patterns and a formal specification method
for design patterns using Real-Time Process Al-
gebra (RTPA) (Wang, 2002, 2003, 2007a). The
approach proposed in this article aimed at the
following objectives:

• It is generic: The same pattern model can be
adopted to specify any existing and future
pattern, particularly user defined patterns.
To some extent, the general pattern model
is the pattern of patterns.

• It is formalized: The mathematical seman-
tics and formal notation system are based
on RTPA (Wang, 2002, 2003, 2007a).

• It is expressive: Only 34 notations are used
to denote class association relationship and
specify patterns from three facets known

11 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/formal-modeling-specification-design-

patterns/29413

Related Content

On the Accelerated Convergence of Genetic Algorithm Using GPU Parallel Operations
Cheng-Chieh Li, Jung-Chun Liu, Chu-Hsing Linand Winston Lo (2015). International Journal of Software

Innovation (pp. 1-17).

www.irma-international.org/article/on-the-accelerated-convergence-of-genetic-algorithm-using-gpu-parallel-

operations/133111

Design and Analysis of Decision Support Systems
John Wang, James Yao, Qiyang Chenand Ruben Xing (2009). Handbook of Research on Modern Systems

Analysis and Design Technologies and Applications (pp. 119-129).

www.irma-international.org/chapter/design-analysis-decision-support-systems/21065

Introduction
Neal G. Shaw (2001). Strategies for Managing Computer Software Upgrades (pp. 1-2).

www.irma-international.org/chapter/introduction/98484

BROOD: Business Rules-Driven Object Oriented Design
Pericles Loucopoulosand Wan M.N. Wan Kadir (2009). Software Applications: Concepts, Methodologies,

Tools, and Applications (pp. 1043-1078).

www.irma-international.org/chapter/brood-business-rules-driven-object/29434

Machine Learning and Value-Based Software Engineering
Du Zhang (2009). Software Applications: Concepts, Methodologies, Tools, and Applications (pp. 3325-

3339).

www.irma-international.org/chapter/machine-learning-value-based-software/29564

http://www.igi-global.com/chapter/formal-modeling-specification-design-patterns/29413
http://www.igi-global.com/chapter/formal-modeling-specification-design-patterns/29413
http://www.irma-international.org/article/on-the-accelerated-convergence-of-genetic-algorithm-using-gpu-parallel-operations/133111
http://www.irma-international.org/article/on-the-accelerated-convergence-of-genetic-algorithm-using-gpu-parallel-operations/133111
http://www.irma-international.org/chapter/design-analysis-decision-support-systems/21065
http://www.irma-international.org/chapter/introduction/98484
http://www.irma-international.org/chapter/brood-business-rules-driven-object/29434
http://www.irma-international.org/chapter/machine-learning-value-based-software/29564

