
942

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.23
A Model-Driven Development
Framework for Non-Functional

Aspects in Service Oriented
Architecture

Hiroshi Wada
University of Massachusetts – Boston, USA

Junichi Suzuki
University of Massachusetts – Boston, USA

Katsuya Oba
OGIS International, Inc., USA

AbstrAct

Service oriented architecture (SOA) is an emerg-
ing style of software architectures to reuse and
integrate existing systems for designing new
applications. Each application is designed in an
implementation independent manner using two
major abstract concepts: services and connections
between services. In SOA, non-functional aspects
(e.g., security and fault tolerance) of services
and connections should be described separately
from their functional aspects (i.e., business logic)
because different applications use services and

connections in different non-functional contexts.
This paper proposes a model-driven development
(MDD) framework for non-functional aspects in
SOA. The proposed MDD framework consists of
(1) a Unified Modeling Language (UML) profile
to model non-functional aspects in SOA, and
(2) an MDD tool that transforms a UML model
defined with the proposed profile to application
code. Empirical evaluation results show that the
proposed MDD framework improves the reus-
ability and maintainability of service-oriented
applications by hiding low-level implementation
technologies in SOA.

 943

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

IntroductIon

A key challenge in large-scale distributed sys-
tems is to reuse and integrate existing systems to
build new applications in a cost effective manner
(Vinoski, 2003; Zhang, 2004). Service Oriented
Architecture (SOA) addresses this challenge by
improving the reusability and maintainability
of distributed systems (Arsanjani, Zhang, Ellis,
Allam, & Channabasavaiah, 2007; Bichler &
Lin, 2006; Endrei, Ang, Arsanjani, Chua, Comte,
Krogdahl, Luo, & Newling, 2004; Foster, 2005;
Lewis, Morris, Brien, Smith, & Wrage, 2005;
Papazoglou, 2003). It is an emerging style of
software architectures to design applications in
an implementation independent manner using two
major abstract concepts: services and connections
between services. Each service encapsulates the
function of a subsystem in an existing system.
Each connection defines how services are con-
nected with each other and how messages are
exchanged through the connection. SOA hides the
implementation details of services and connec-
tions (e.g., programming languages and remoting
middleware) from application developers. They
can reuse and combine services to build their ap-
plications without knowing the implementation
details of services and connections.

In order to make this vision of SOA a real-
ity, this article focuses on a research issue of
increasing the reusability of services and con-
nections and addresses this issue by separating
non-functional aspects (e.g., security and fault
tolerance) of services and connections from their
functional aspects. The separation of functional
and non-functional aspects can improve the re-
usability of services and connections because it
allows different applications to use services and
connections in different non-functional contexts.
For example, an application may unicast mes-
sages to a service and another may manycast
messages to multiple replicas of the service to
improve fault tolerance. Also, an application may

send signed and encrypted messages to a service,
when the messages travel to the service through
third-party intermediaries, in order to prevent
the intermediaries from maliciously sniffing or
altering the messages. Another application may
send plain messages to the service via unsecured
connection when the service is hosted in-house.
The separation of functional and non-functional
aspects can also improve the ease of understanding
application design and enable the two different
aspects to evolve independently. This results in
higher maintainability of applications.

This article describes a model-driven devel-
opment (MDD) framework for non-functional
aspects in SOA. The MDD framework consists of
(1) a Unified Modeling Language (UML) profile
to model non-functional aspects in SOA, and (2)
an MDD tool that accepts a UML model defined
with the proposed profile and transforms it to ap-
plication code (e.g., program code and deployment
descriptors). The proposed UML profile allows
application developers to graphically describe
and maintain non-functional aspects in SOA as
UML diagrams (composite structure diagrams
and class diagrams). Using the proposed UML
profile, non-functional aspects can be modeled
without depending on any particular implementa-
tion technologies. The proposed MDD tool, called
Ark, transforms implementation independent
UML models into implementation specific ap-
plication code.

This article describes design details of the
proposed UML profile and demonstrates how
Ark transforms an input UML model to applica-
tion code that runs with certain implementation
technologies such as Enterprise Service Buses
(ESBs) (Chappell, 2004), secure file transfer pro-
tocols and grid computing platforms. Empirical
evaluation results show that the proposed MDD
framework improves the reusability and maintain-
ability of service-oriented applications by hiding
implementation technologies in UML models.

31 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/model-driven-development-framework-

non/29429

Related Content

A Framework for Communicability of Software Documentation
Pankaj Kamthan (2009). Software Applications: Concepts, Methodologies, Tools, and Applications (pp.

180-188).

www.irma-international.org/chapter/framework-communicability-software-documentation/29389

Computational Intelligence in Cross Docking
Bo Xing (2014). International Journal of Software Innovation (pp. 1-8).

www.irma-international.org/article/computational-intelligence-in-cross-docking/111446

Comparative Analysis of Intelligent Driving and Safety Assistance Systems Using YOLO and

SSD Model of Deep Learning
Nidhi Sindhwani, Shekhar Verma, Tushar Bajajand Rohit Anand (2021). International Journal of Information

System Modeling and Design (pp. 131-146).

www.irma-international.org/article/comparative-analysis-of-intelligent-driving-and-safety-assistance-systems-using-yolo-

and-ssd-model-of-deep-learning/273230

Network Services
 (2015). Challenges, Opportunities, and Dimensions of Cyber-Physical Systems (pp. 242-262).

www.irma-international.org/chapter/network-services/121259

A Modified Parallel Heapsort Algorithm
Hiroaki Hirataand Atsushi Nunome (2020). International Journal of Software Innovation (pp. 1-18).

www.irma-international.org/article/a-modified-parallel-heapsort-algorithm/256233

http://www.igi-global.com/chapter/model-driven-development-framework-non/29429
http://www.igi-global.com/chapter/model-driven-development-framework-non/29429
http://www.irma-international.org/chapter/framework-communicability-software-documentation/29389
http://www.irma-international.org/article/computational-intelligence-in-cross-docking/111446
http://www.irma-international.org/article/comparative-analysis-of-intelligent-driving-and-safety-assistance-systems-using-yolo-and-ssd-model-of-deep-learning/273230
http://www.irma-international.org/article/comparative-analysis-of-intelligent-driving-and-safety-assistance-systems-using-yolo-and-ssd-model-of-deep-learning/273230
http://www.irma-international.org/chapter/network-services/121259
http://www.irma-international.org/article/a-modified-parallel-heapsort-algorithm/256233

