
1280

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.10
Evolution in Model-Driven

Software Product-Line
Architectures

Gan Deng
Vanderbilt University, USA

Jeff Gray
University of Alabama at Birmingham, USA

Douglas C. Schmidt
Vanderbilt University, USA

Yuehua Lin
University of Alabama at Birmingham, USA

Aniruddha Gokhale
Vanderbilt University, USA

Gunther Lenz
Microsoft, USA

Abstract

This chapter describes our approach to model-
driven engineering (MDE)-based product line
architectures (PLAs) and presents a solution to
address the domain evolution problem. We use a
case study of a representative software-intensive
system from the distributed real-time embedded

(DRE) systems domain to describe key challenges
when facing domain evolution and how we can
evolve PLAs systematically and minimize hu-
man intervention. The approach uses a mature
metamodeling tool to define a modeling language
in the representative DRE domain, and applies a
model transformation tool to specify model-to-
model transformation rules that precisely define

 1281

Evolution in Model-Driven Software Product-Line Architectures

metamodel and domain model changes. Our
approach automates many tedious, time consum-
ing, and error-prone tasks of model-to-model
transformation, thus significantly reducing the
complexity of PLA evolution.

INTRODUCTION

Software product-line architectures (PLAs)
are a promising technology for industrializing
software-intensive systems by focusing on the
automated assembly and customization of domain-
specific components, rather than (re)programming
systems manually (Clements & Northrop, 2001).
A PLA is a family of software-intensive product
variants developed for a specific domain that share
a set of common features. Conventional PLAs
consist of component frameworks (Szyperski,
2002) as core assets, whose design captures recur-
ring structures, connectors, and control flow in
an application domain, along with the points of
variation explicitly allowed among these entities.

PLAs are typically designed using scope/com-
monality/variability (SCV) analysis (Coplien,
Hoffman, & Weiss, 1998), which captures key
characteristics of software product-lines, includ-
ing: (1) scope, which defines the domains and
context of the PLA, (2) commonalities, which name
the attributes that recur across all members of the
product family, and (3) variabilities, which contain
the attributes unique to the different members of
the product family.

Motivating the Need for
Model-Driven Software Product-Line
Architectures

Despite improvements in third-generation pro-
gramming languages (such as C++, Java and C#)
and runtime platforms (such as CORBA, J2EE and
Web Services middleware), the levels of abstrac-
tion at which PLAs are developed today remains
low-level relative to the concepts and concerns
within the application domains themselves, such
as manually tracking the library dependency or

Solution
Space

Problem
Space

Figure 1. Using DSMLs and domain-specific component frameworks to enhance abstraction and narrow
the gap between problem and solution space of software-intensive systems

31 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/evolution-model-driven-software-product/29446

Related Content

Efficiency Analysis of Approaches for Temperature Management and Task Mapping in

Networks-on-Chip
Tim Wegner, Martin Gagand Dirk Timmermann (2014). Advancing Embedded Systems and Real-Time

Communications with Emerging Technologies (pp. 368-398).

www.irma-international.org/chapter/efficiency-analysis-of-approaches-for-temperature-management-and-task-mapping-

in-networks-on-chip/108452

Agile Software Development: The Straight and Narrow Path to Secure Software?
Torstein Nicolaysen, Richard Sassoon, Maria B. Lineand Martin Gilje Jaatun (2012). Security-Aware

Systems Applications and Software Development Methods (pp. 1-15).

www.irma-international.org/chapter/agile-software-development/65839

Modelling Situation Awareness Information and System Requirements for the Mission using

Goal-Oriented Task Analysis Approach
Cyril Onwubiko (2014). Software Design and Development: Concepts, Methodologies, Tools, and

Applications (pp. 460-478).

www.irma-international.org/chapter/modelling-situation-awareness-information-system/77718

Hurricane Damage Detection From Satellite Imagery Using Convolutional Neural Networks
Swapandeep Kaur, Sheifali Gupta, Swati Singhand Isha Gupta (2022). International Journal of Information

System Modeling and Design (pp. 1-15).

www.irma-international.org/article/hurricane-damage-detection-from-satellite-imagery-using-convolutional-neural-

networks/306637

Optimal Voting Strategy against Random and Targeted Attacks
Li Wang, Zheng Li, Shangping Renand Kevin Kwiat (2013). International Journal of Secure Software

Engineering (pp. 25-46).

www.irma-international.org/article/optimal-voting-strategy-against-random-and-targeted-attacks/101891

http://www.igi-global.com/chapter/evolution-model-driven-software-product/29446
http://www.irma-international.org/chapter/efficiency-analysis-of-approaches-for-temperature-management-and-task-mapping-in-networks-on-chip/108452
http://www.irma-international.org/chapter/efficiency-analysis-of-approaches-for-temperature-management-and-task-mapping-in-networks-on-chip/108452
http://www.irma-international.org/chapter/agile-software-development/65839
http://www.irma-international.org/chapter/modelling-situation-awareness-information-system/77718
http://www.irma-international.org/article/hurricane-damage-detection-from-satellite-imagery-using-convolutional-neural-networks/306637
http://www.irma-international.org/article/hurricane-damage-detection-from-satellite-imagery-using-convolutional-neural-networks/306637
http://www.irma-international.org/article/optimal-voting-strategy-against-random-and-targeted-attacks/101891

