
107

Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

DOI: 10.4018/978-1-6684-3702-5.ch007

ABSTRACT

This chapter starts with a brief history of software development from a summary of traditional approaches
and presents the conditions that led to agile approaches such as product complexity, shortened life
cycle of the market and eventually to the widespread acceptance of Scrum. The authors then compare
the narrative to the bibliometric analysis of abstract records that can be found in the Web of Science
database. They parse the terms from the abstract records to identify research trends over time and map
the underlying structure of agile research. Finally, they consider the future of Agile-Scrum in light of
the current pandemic.

INTRODUCTION

“Project management” can be defined as a series of activities and processes performed as part of a proj-
ect by a defined set of people, from same or different areas with the aim of generating new or improved
organizational products, services, and/or processes (Jrad and Sundaram, 2015). In this chapter, we dis-
cuss agile project management. This is a method of project management focused on collaboration and
frequent communication. Project management techniques should help the chances of project success. In
the early years of software development, project failure was too common, resulting in the development

A Historical and
Bibliometric Analysis of the

Development of Agile
Cherie C. Trumbach

University of New Orleans, USA

Kenneth R. Walsh
University of New Orleans, USA

Sathiadev Mahesh
University of New Orleans, USA

108

A Historical and Bibliometric Analysis of the Development of Agile

of structured approaches that sought to ensure successes. Traditional structured approaches to software
project management, sometimes referred to as the systems development life cycle or the waterfall method,
became accepted practice. As these structured methods became standard practice, software project
failure remained high and experts recognized that such a dynamic environment may require rethink-
ing software development management. Agile methods then took the assumption that all requirements
cannot be known at project initiation and that the dynamic business and technology environments will
cause change during the project.

Agile software development was formalized as a methodology in 2001 with the creation of the Agile
Manifesto. It refers to a set of computer programming methodologies that emphasize flexibility, col-
laboration, efficiency, simplicity, and most of all, delivering working products to end users within short
timeframes (Codington-Lacerte, 2018). However, as time has passed, agile principles have spread into
additional industries including general project management. According to Hayat (2019) almost every
software company uses agile development, particularly Scrum, and these companies have experienced
many positive results from its use.

This chapter starts with a brief history of Software Development from a summary of traditional ap-
proaches and presents the arguments made for agile approaches and the eventual widespread acceptance
of Scrum. We then compare the narrative to the bibliometric analysis of abstract records that can be
found in the Web of Science database. Finally, we consider the future of Agile-Scrum in light of the
current pandemic.

BACKGROUND

From Traditional Software Development to Scrum

Early software development was done by developers who had both responsibility for analysis and coding.
Such a two-step process was thought to be adequate for small scale development, but led to numerous
problems for large software systems (Royce, 1970). A simple solution may have been to introduce a more
sophisticated methodology with increased documentation and decomposition to allow more people to
work in concert. However, such an approach is risky because errors found will inevitably lead to rework of
previous steps (Royce, 1970). As an answer to this, a more sophisticated development timeline including
iteration, documentation, and testing was proposed (Royce, 1970). The result of this line of thinking was
an iterative and adaptive model of the phases of large-scale software development (Royce, 1970). Boehm
(1983) reiterated the importance of a planned and phased approach. Boehm (1983 also emphasized the
importance of documenting and completing phases before moving on to subsequent phases, although he
also discussed using prototyping, incremental development, and scaffolding as ways to not necessarily
defer coding until specifications were complete. This process was formalized into the familiar “analysis-
design-implementation-test” steps. As the process became more formalized, particularly in the 1980s,
the opportunity to automate parts of the process became more evident. However, with formalization by
a wide range of practitioners, the structure of the phases may have been refined and the expense of the
concepts of iteration and adaptation.

In the early stages of agile software development, prototypes followed by incremental steps were
utilized. These were the first steps toward agile processes. However, these increments and prototypes
were limited. They may have been applied in just one cycle where a prototype was refined to produce a

13 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/a-historical-and-bibliometric-analysis-of-the-

development-of-agile/294461

Related Content

Modelling Self-Led Trust Value Management in Grid and Service Oriented Infrastructures: A

Graph Theoretic Social Network Mediated Approach
Antony Brown, Paul Sant, Nik Bessis, Tim Frenchand Carsten Maple (2010). International Journal of

Systems and Service-Oriented Engineering (pp. 1-18).

www.irma-international.org/article/modelling-self-led-trust-value/48515

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering

Courses and Curricula
Nancy R. Meadand Dan Shoemaker (2009). Software Engineering: Effective Teaching and Learning

Approaches and Practices (pp. 98-113).

www.irma-international.org/chapter/novel-methods-incorporating-security-requirements/29595

Temporal Interaction Diagrams for Multi-Process Environments
T. Y. Chen, Iyad Rahwanand Yun Yang (2003). Practicing Software Engineering in the 21st Century (pp.

143-155).

www.irma-international.org/chapter/temporal-interaction-diagrams-multi-process/28115

An Aspect-Oriented Approach to Hardware Fault Tolerance for Embedded Systems
David de Andrés, Juan–Carlos Ruiz, Jaime Espinosaand Pedro Gil (2014). Handbook of Research on

Embedded Systems Design (pp. 123-149).

www.irma-international.org/chapter/an-aspect-oriented-approach-to-hardware-fault-tolerance-for-embedded-

systems/116107

A Business Motivation Model for IT Service Management
Marco Vicente, Nelson Gamaand Miguel Mira da Silva (2014). International Journal of Information System

Modeling and Design (pp. 83-107).

www.irma-international.org/article/a-business-motivation-model-for-it-service-management/106935

http://www.igi-global.com/chapter/a-historical-and-bibliometric-analysis-of-the-development-of-agile/294461
http://www.igi-global.com/chapter/a-historical-and-bibliometric-analysis-of-the-development-of-agile/294461
http://www.irma-international.org/article/modelling-self-led-trust-value/48515
http://www.irma-international.org/chapter/novel-methods-incorporating-security-requirements/29595
http://www.irma-international.org/chapter/temporal-interaction-diagrams-multi-process/28115
http://www.irma-international.org/chapter/an-aspect-oriented-approach-to-hardware-fault-tolerance-for-embedded-systems/116107
http://www.irma-international.org/chapter/an-aspect-oriented-approach-to-hardware-fault-tolerance-for-embedded-systems/116107
http://www.irma-international.org/article/a-business-motivation-model-for-it-service-management/106935

