
399

Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 20

DOI: 10.4018/978-1-6684-3702-5.ch020

ABSTRACT

Testing of software is broadly divided into three types i.e., code based, model based and specification
based. To find faults at early stage, model based testing can be used in which testing can be started
from design phase. Furthermore, in this chapter, to generate new test cases and to ensure the quality
of changed software, regression testing is used. Early detection of faults will not only reduce the cost,
time and effort of developers but also will help finding risks. We are using structural metrics to check
the effect of changes made to software. Finally, the authors suggest identifying metrics and analyze the
results using NDepend simulator. If results show deviation from standards then again perform regression
testing to improve the quality of software.

INTRODUCTION

Testing of software is fundamental and central part of software development process. UML is the most
prevailing standard language used in modeling test cases (A. K. Jena et al, 2014). Therefore, if it is
pleasingly exploited it will reduce the cost and effort of testing as well as modification in code. Activity
diagrams can improve the quality of the generated test cases as well as use these test cases for regression
testing because it shows the overall flow of control between activities and object using activity-based
relationships (Ye et al., 2011).

Use of Software Metrics
to Improve the Quality of
Software Projects Using

Regression Testing
Arshpreet Kaur Sidhu

Chandigarh University, India

Sumeet Kaur Sehra
GNDEC, India

400

Use of Software Metrics to Improve the Quality of Software Projects Using Regression Testing

Testing of Software

Before moving to the details of work done in this chapter, we are focusing on testing first. Testing of
software in a simple language is a method to find out errors and missed requirements as specified by the
user. Testing can be performed by developers as unit testing and can be performed by software testing
professionals to get good quality product.

Testing can be started from the early phase of software i.e. requirement phase and can be done up
till deployment. Early start of testing will help in reducing the cost and time of developers because the
errors and gaps can be removed as earliest possible. Testing is one process which is not confined at
testing phase only. At requirement phase testing is performed in the form of analyzing and verifying
the requirements. At design phase reviewing the design documents with gathered requirements is also
a part of testing. At coding phase, the part of unit testing performed by developer at completion of code
is also a part of testing.

Testing and Quality Assurance

Testing and Quality Assurance are interrelated terms. Testing insures the identification of errors and
bugs in software whereas quality assurance focuses on accomplishment of processes and standards in
the direction of verification of software. Testing is error and bug identifying technique and do not fixes
bugs. To fix bugs at coding level developers can use debugging which is a part of white box and black
box testing.

Types of Testing

Testing is categorized as manual and automated. In manual testing software is tested manually and end
users take the role of testers to test software for bugs and unforeseen behavior. Stages at which manual
testing is done are unit, integration, system and user acceptance testing. In automated testing also known
as test automation the tester writes script and uses different software to test the functionality of given
software. In this testing test scenarios are re-run repeatedly which were performed manually for time
saving. It is assumed that automated testing improves test coverage and accuracy. GUI items, connec-
tions can be effectively tested with the help of test automation (Rathi et al., 2015; Bhullar et al., 2017).

Methods of Testing

Black Box Testing

It is a technique of testing software without knowing the internal details and working of software. Gener-
ally, in black box testing testers interact with the user interface of system by giving inputs to the system
and analyzing the outputs. They hardly have details about where the inputs are working in code. This
method is preferred for large segment of code but has limited coverage of test cases.

11 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/use-of-software-metrics-to-improve-the-quality-

of-software-projects-using-regression-testing/294475

Related Content

Analog Learning Neural Network using Two-Stage Mode by Multiple and Sample Hold Circuits
Masashi Kawaguchi, Naohiro Ishiiand Takashi Jimbo (2014). International Journal of Software Innovation

(pp. 61-72).

www.irma-international.org/article/analog-learning-neural-network-using-two-stage-mode-by-multiple-and-sample-hold-

circuits/111450

Value and Intention Based Information Systems Engineering
Paul Johannessonand Prasad Jayaweera (2008). Information Systems Engineering: From Data Analysis to

Process Networks (pp. 66-96).

www.irma-international.org/chapter/value-intention-based-information-systems/23412

A Source Code Plagiarism Detecting Method Using Sequence Alignment with Abstract Syntax

Tree Elements
Hiroshi Kikuchi, Takaaki Goto, Mitsuo Wakatsukiand Tetsuro Nishino (2015). International Journal of

Software Innovation (pp. 41-56).

www.irma-international.org/article/a-source-code-plagiarism-detecting-method-using-sequence-alignment-with-abstract-

syntax-tree-elements/126615

The Impact of eXtreme Programming on Maintenance
Fabrizio Fioravanti (2003). Advances in Software Maintenance Management: Technologies and Solutions

(pp. 75-92).

www.irma-international.org/chapter/impact-extreme-programming-maintenance/4899

Control Analysis and Simulation
 (2017). Model-Based Design for Effective Control System Development (pp. 231-254).

www.irma-international.org/chapter/control-analysis-and-simulation/179502

http://www.igi-global.com/chapter/use-of-software-metrics-to-improve-the-quality-of-software-projects-using-regression-testing/294475
http://www.igi-global.com/chapter/use-of-software-metrics-to-improve-the-quality-of-software-projects-using-regression-testing/294475
http://www.irma-international.org/article/analog-learning-neural-network-using-two-stage-mode-by-multiple-and-sample-hold-circuits/111450
http://www.irma-international.org/article/analog-learning-neural-network-using-two-stage-mode-by-multiple-and-sample-hold-circuits/111450
http://www.irma-international.org/chapter/value-intention-based-information-systems/23412
http://www.irma-international.org/article/a-source-code-plagiarism-detecting-method-using-sequence-alignment-with-abstract-syntax-tree-elements/126615
http://www.irma-international.org/article/a-source-code-plagiarism-detecting-method-using-sequence-alignment-with-abstract-syntax-tree-elements/126615
http://www.irma-international.org/chapter/impact-extreme-programming-maintenance/4899
http://www.irma-international.org/chapter/control-analysis-and-simulation/179502

